Wan2.2-Lora / app1.py
rahul7star's picture
Update app1.py
cf4ec53 verified
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"')
from huggingface_hub import HfApi, upload_file
import uuid
import subprocess
import tempfile
import logging
import shutil
from datetime import datetime
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
from huggingface_hub import hf_hub_download
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
LORA_REPO_ID = "rahul7star/wan2.2Lora"
LORA_SETS = {
"NF": {
"high_noise": {"file": "NSFW-22-H-e8.safetensors", "adapter_name": "nf_high"},
"low_noise": {"file": "NSFW-22-L-e8.safetensors", "adapter_name": "nf_low"}
},
"BP": {
"high_noise": {"file": "Wan2.2_BP-v1-HighNoise-I2V_T2V.safetensors", "adapter_name": "bp_high"},
"low_noise": {"file": "Wan2.2_BP-v1-LowNoise-I2V_T2V.safetensors", "adapter_name": "bp_low"}
},
"Py-v1": {
"high_noise": {"file": "wan2.2_i2v_highnoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_high"},
"low_noise": {"file": "wan2.2_i2v_lownoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_low"}
}
}
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 576
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
# ---------------- Pipeline -----------------
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained(
'cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained(
'cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
torch_dtype=torch.bfloat16,
).to('cuda')
# Optimize once for AoT
optimize_pipeline_(
pipe,
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
# ---------------- Load LoRA Weights -----------------
for name, lora_set in LORA_SETS.items():
print(f"--- LoRA 集合: {name} ---")
high_noise_config = lora_set["high_noise"]
print(f"High Noise: {high_noise_config['file']}...")
pipe.load_lora_weights(
LORA_REPO_ID,
weight_name=high_noise_config['file'],
adapter_name=high_noise_config['adapter_name']
)
print("High Noise LoRA 加载完成。")
low_noise_config = lora_set["low_noise"]
print(f"Low Noise: {low_noise_config['file']}...")
pipe.load_lora_weights(
LORA_REPO_ID,
weight_name=low_noise_config['file'],
adapter_name=low_noise_config['adapter_name']
)
print("Low Noise LoRA 加载完成。")
# Fuse once globally
try:
pipe.fuse_lora()
print("✅ 全局 Fuse LoRA 成功")
except Exception as e:
print(f"⚠️ Fuse LoRA 失败: {e}")
# Clean GPU
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
# ---------------- Defaults -----------------
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = (
"色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, "
"整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, "
"画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, "
"静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
)
# ---------------- Utils -----------------
def resize_image(image: Image.Image) -> Image.Image:
if image.height > image.width:
transposed = image.transpose(Image.Transpose.ROTATE_90)
resized = resize_image_landscape(transposed)
return resized.transpose(Image.Transpose.ROTATE_270)
return resize_image_landscape(image)
def resize_image_landscape(image: Image.Image) -> Image.Image:
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
width, height = image.size
in_aspect = width / height
if in_aspect > target_aspect:
new_width = round(height * target_aspect)
left = (width - new_width) // 2
image = image.crop((left, 0, left + new_width, height))
else:
new_height = round(width / target_aspect)
top = (height - new_height) // 2
image = image.crop((0, top, width, top + new_height))
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
def get_duration(
input_image,
prompt,
steps,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
seed,
randomize_seed,
selected_loras,
progress,
):
return int(steps) * 15
# ---------------- LoRA Switcher -----------------
class LoraSwitcher:
def __init__(self, selected_lora_names, switch_step):
self.switched = False
self.high_noise_adapters = []
self.low_noise_adapters = []
self.switch_step = switch_step
if selected_lora_names:
for name in selected_lora_names:
if name in LORA_SETS:
self.high_noise_adapters.append(LORA_SETS[name]["high_noise"]["adapter_name"])
self.low_noise_adapters.append(LORA_SETS[name]["low_noise"]["adapter_name"])
def __call__(self, pipe, step_index, timestep, callback_kwargs):
if step_index == 0:
self.switched = False
if self.high_noise_adapters:
print(f"激活 High Noise LoRA: {self.high_noise_adapters}")
pipe.set_adapters(self.high_noise_adapters, adapter_weights=[1.0]*len(self.high_noise_adapters))
try:
pipe.fuse_lora()
print("Fuse High Noise LoRA ✅")
except Exception as e:
print(f"Fuse High Noise LoRA 失败: {e}")
elif pipe.get_active_adapters():
active = pipe.get_active_adapters()
print(f"禁用残留的 LoRA: {active}")
pipe.set_adapters(active, adapter_weights=[0.0]*len(active))
if self.low_noise_adapters and step_index >= self.switch_step and not self.switched:
print(f"在第 {step_index} 步切换到 Low Noise LoRA: {self.low_noise_adapters}")
pipe.set_adapters(self.low_noise_adapters, adapter_weights=[1.0]*len(self.low_noise_adapters))
try:
pipe.fuse_lora()
print("Fuse Low Noise LoRA ✅")
except Exception as e:
print(f"Fuse Low Noise LoRA 失败: {e}")
self.switched = True
return callback_kwargs
# ---------------- Main Generation -----------------
@spaces.GPU(duration=get_duration)
def generate_video(
input_image,
prompt,
steps=4,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
selected_loras=[],
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
raise gr.Error("Please upload an input image.")
print("Prompt is:", prompt)
# Reset fused LoRA before new run
try:
pipe.unfuse_lora()
print("🔄 Reset unfuse_lora before generation")
except Exception:
pass
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
num_inference_steps = int(steps)
switch_step = num_inference_steps // 2
lora_switcher_callback = LoraSwitcher(selected_loras, switch_step)
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=num_inference_steps,
generator=torch.Generator(device="cuda").manual_seed(current_seed),
callback_on_step_end=lora_switcher_callback,
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
# ---------------- UI -----------------
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 I2V (14B) with Lightning LoRA")
gr.Markdown("Run Wan 2.2 in just 4-8 steps, with Lightning LoRA, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image (auto-resized)", interactive=True)
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)")
lora_selection_checkbox = gr.CheckboxGroup(choices=list(LORA_SETS.keys()), label="选择要应用的 LoRA (可多选)")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True)
ui_inputs = [
input_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, seed_input,
randomize_seed_checkbox, lora_selection_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
if __name__ == "__main__":
demo.queue().launch()