Spaces:
Runtime error
Runtime error
Create app.py
#1
by
reach-vb
HF Staff
- opened
app.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
+
import random
|
5 |
+
from functools import lru_cache
|
6 |
+
from typing import List, Tuple, Optional, Any
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
from huggingface_hub import InferenceClient, hf_hub_download
|
10 |
+
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
# Configuration
|
13 |
+
# -----------------------------------------------------------------------------
|
14 |
+
|
15 |
+
# LoRAs in the "Kontext Dev LoRAs" collection.
|
16 |
+
# NOTE: We hard-code the list for now. If the collection grows you can simply
|
17 |
+
# append new model IDs here.
|
18 |
+
LORA_MODELS: List[str] = [
|
19 |
+
# fal – original author
|
20 |
+
"fal/Watercolor-Art-Kontext-Dev-LoRA",
|
21 |
+
"fal/Pop-Art-Kontext-Dev-LoRA",
|
22 |
+
"fal/Pencil-Drawing-Kontext-Dev-LoRA",
|
23 |
+
"fal/Mosaic-Art-Kontext-Dev-LoRA",
|
24 |
+
"fal/Minimalist-Art-Kontext-Dev-LoRA",
|
25 |
+
"fal/Impressionist-Art-Kontext-Dev-LoRA",
|
26 |
+
"fal/Gouache-Art-Kontext-Dev-LoRA",
|
27 |
+
"fal/Expressive-Art-Kontext-Dev-LoRA",
|
28 |
+
"fal/Cubist-Art-Kontext-Dev-LoRA",
|
29 |
+
"fal/Collage-Art-Kontext-Dev-LoRA",
|
30 |
+
"fal/Charcoal-Art-Kontext-Dev-LoRA",
|
31 |
+
"fal/Acrylic-Art-Kontext-Dev-LoRA",
|
32 |
+
"fal/Abstract-Art-Kontext-Dev-LoRA",
|
33 |
+
"fal/Plushie-Kontext-Dev-LoRA",
|
34 |
+
"fal/Youtube-Thumbnails-Kontext-Dev-LoRA",
|
35 |
+
"fal/Broccoli-Hair-Kontext-Dev-LoRA",
|
36 |
+
"fal/Wojak-Kontext-Dev-LoRA",
|
37 |
+
"fal/3D-Game-Assets-Kontext-Dev-LoRA",
|
38 |
+
"fal/Realism-Detailer-Kontext-Dev-LoRA",
|
39 |
+
# community LoRAs
|
40 |
+
"gokaygokay/Pencil-Drawing-Kontext-Dev-LoRA",
|
41 |
+
"gokaygokay/Oil-Paint-Kontext-Dev-LoRA",
|
42 |
+
"gokaygokay/Watercolor-Kontext-Dev-LoRA",
|
43 |
+
"gokaygokay/Pastel-Flux-Kontext-Dev-LoRA",
|
44 |
+
"gokaygokay/Low-Poly-Kontext-Dev-LoRA",
|
45 |
+
"gokaygokay/Bronze-Sculpture-Kontext-Dev-LoRA",
|
46 |
+
"gokaygokay/Marble-Sculpture-Kontext-Dev-LoRA",
|
47 |
+
"gokaygokay/Light-Fix-Kontext-Dev-LoRA",
|
48 |
+
"gokaygokay/Fuse-it-Kontext-Dev-LoRA",
|
49 |
+
"ilkerzgi/Overlay-Kontext-Dev-LoRA",
|
50 |
+
]
|
51 |
+
|
52 |
+
# Optional metadata cache file. Generated by `generate_lora_metadata.py`.
|
53 |
+
METADATA_FILE = "lora_metadata.json"
|
54 |
+
|
55 |
+
|
56 |
+
def _load_metadata() -> dict:
|
57 |
+
"""Load cached preview/trigger data if the JSON file exists."""
|
58 |
+
if os.path.exists(METADATA_FILE):
|
59 |
+
try:
|
60 |
+
with open(METADATA_FILE, "r", encoding="utf-8") as fp:
|
61 |
+
return json.load(fp)
|
62 |
+
except Exception:
|
63 |
+
pass
|
64 |
+
return {}
|
65 |
+
|
66 |
+
|
67 |
+
# Token used for anonymous free quota
|
68 |
+
FREE_TOKEN_ENV = "HF_TOKEN"
|
69 |
+
FREE_REQUESTS = 10
|
70 |
+
|
71 |
+
# -----------------------------------------------------------------------------
|
72 |
+
# Utility helpers
|
73 |
+
# -----------------------------------------------------------------------------
|
74 |
+
|
75 |
+
|
76 |
+
@lru_cache(maxsize=None)
|
77 |
+
def get_client(token: str) -> InferenceClient:
|
78 |
+
"""Return cached InferenceClient instance for supplied token."""
|
79 |
+
return InferenceClient(provider="fal-ai", api_key=token)
|
80 |
+
|
81 |
+
|
82 |
+
IMG_PATTERN = re.compile(r"!\[.*?\]\((.*?)\)")
|
83 |
+
TRIGGER_PATTERN = re.compile(r"[Tt]rigger[^:]*:\s*([^\n]+)")
|
84 |
+
|
85 |
+
|
86 |
+
@lru_cache(maxsize=None)
|
87 |
+
def fetch_preview_and_trigger(model_id: str) -> Tuple[Optional[str], Optional[str]]:
|
88 |
+
"""Try to fetch a preview image URL and trigger phrase from the model card.
|
89 |
+
|
90 |
+
If unsuccessful, returns (None, None).
|
91 |
+
"""
|
92 |
+
try:
|
93 |
+
# Download README.
|
94 |
+
readme_path = hf_hub_download(repo_id=model_id, filename="README.md")
|
95 |
+
except Exception:
|
96 |
+
return None, None
|
97 |
+
|
98 |
+
image_url: Optional[str] = None
|
99 |
+
trigger_phrase: Optional[str] = None
|
100 |
+
|
101 |
+
try:
|
102 |
+
with open(readme_path, "r", encoding="utf-8") as fp:
|
103 |
+
text = fp.read()
|
104 |
+
# First image in markdown → preview
|
105 |
+
if (m := IMG_PATTERN.search(text)) is not None:
|
106 |
+
img_path = m.group(1)
|
107 |
+
if img_path.startswith("http"):
|
108 |
+
image_url = img_path
|
109 |
+
else:
|
110 |
+
image_url = f"https://huggingface.co/{model_id}/resolve/main/{img_path.lstrip('./')}"
|
111 |
+
# Try to parse trigger phrase
|
112 |
+
if (m := TRIGGER_PATTERN.search(text)) is not None:
|
113 |
+
trigger_phrase = m.group(1).strip()
|
114 |
+
except Exception:
|
115 |
+
pass
|
116 |
+
return image_url, trigger_phrase
|
117 |
+
|
118 |
+
|
119 |
+
# -----------------------------------------------------------------------------
|
120 |
+
# Core inference function
|
121 |
+
# -----------------------------------------------------------------------------
|
122 |
+
|
123 |
+
def run_lora(
|
124 |
+
input_image, # bytes or PIL.Image
|
125 |
+
prompt: str,
|
126 |
+
model_id: str,
|
127 |
+
guidance_scale: float,
|
128 |
+
token: str | None,
|
129 |
+
req_count: int,
|
130 |
+
):
|
131 |
+
"""Execute image → image generation via selected LoRA."""
|
132 |
+
if input_image is None:
|
133 |
+
raise gr.Error("Please provide an input image.")
|
134 |
+
|
135 |
+
# Determine which token we will use
|
136 |
+
if token:
|
137 |
+
api_token = token
|
138 |
+
else:
|
139 |
+
free_token = os.getenv(FREE_TOKEN_ENV)
|
140 |
+
if free_token is None:
|
141 |
+
raise gr.Error("Service not configured for free usage. Please login.")
|
142 |
+
|
143 |
+
if req_count >= FREE_REQUESTS:
|
144 |
+
raise gr.Error("Free quota exceeded – please login with your own HF account to continue.")
|
145 |
+
|
146 |
+
api_token = free_token
|
147 |
+
|
148 |
+
client = get_client(api_token)
|
149 |
+
# Gradio delivers PIL.Image by default. InferenceClient accepts bytes.
|
150 |
+
if hasattr(input_image, "tobytes"):
|
151 |
+
import io
|
152 |
+
buf = io.BytesIO()
|
153 |
+
input_image.save(buf, format="PNG")
|
154 |
+
img_bytes = buf.getvalue()
|
155 |
+
elif isinstance(input_image, bytes):
|
156 |
+
img_bytes = input_image
|
157 |
+
else:
|
158 |
+
raise gr.Error("Unsupported image format.")
|
159 |
+
|
160 |
+
output = client.image_to_image(
|
161 |
+
img_bytes,
|
162 |
+
prompt=prompt,
|
163 |
+
model=model_id,
|
164 |
+
guidance_scale=guidance_scale,
|
165 |
+
)
|
166 |
+
# Update request count only if using free token
|
167 |
+
new_count = req_count if token else req_count + 1
|
168 |
+
return output, new_count, f"Free requests remaining: {max(0, FREE_REQUESTS - new_count)}" if not token else "Logged in ✅ Unlimited"
|
169 |
+
|
170 |
+
|
171 |
+
# -----------------------------------------------------------------------------
|
172 |
+
# UI assembly
|
173 |
+
# -----------------------------------------------------------------------------
|
174 |
+
|
175 |
+
def build_interface():
|
176 |
+
# Pre-load metadata into closure for fast look-ups.
|
177 |
+
metadata_cache = _load_metadata()
|
178 |
+
|
179 |
+
# Theme & CSS
|
180 |
+
theme = gr.themes.Soft(primary_hue="violet", secondary_hue="indigo")
|
181 |
+
custom_css = """
|
182 |
+
.gradio-container {max-width: 980px; margin: auto;}
|
183 |
+
.gallery-item {border-radius: 8px; overflow: hidden;}
|
184 |
+
"""
|
185 |
+
|
186 |
+
with gr.Blocks(title="Kontext-Dev LoRA Playground", theme=theme, css=custom_css) as demo:
|
187 |
+
token_state = gr.State(value="")
|
188 |
+
request_count_state = gr.State(value=0)
|
189 |
+
|
190 |
+
# --- Authentication UI -------------------------------------------
|
191 |
+
if hasattr(gr, "LoginButton"):
|
192 |
+
login_btn = gr.LoginButton(label="🔐 Sign in with Hugging Face")
|
193 |
+
token_status = gr.Markdown(value=f"Not logged in – using free quota (max {FREE_REQUESTS})")
|
194 |
+
|
195 |
+
def _handle_login(login_data: Any):
|
196 |
+
"""Extract HF token from login payload returned by LoginButton."""
|
197 |
+
token: str = ""
|
198 |
+
if isinstance(login_data, dict):
|
199 |
+
token = login_data.get("access_token") or login_data.get("token") or ""
|
200 |
+
elif isinstance(login_data, str):
|
201 |
+
token = login_data
|
202 |
+
status = "Logged in ✅ Unlimited" if token else f"Not logged in – using free quota (max {FREE_REQUESTS})"
|
203 |
+
return token, status
|
204 |
+
|
205 |
+
login_btn.login(_handle_login, outputs=[token_state, token_status])
|
206 |
+
else:
|
207 |
+
# Fallback manual token input if LoginButton not available (local dev)
|
208 |
+
with gr.Accordion("🔑 Paste your HF token (optional)", open=False):
|
209 |
+
token_input = gr.Textbox(label="HF Token", type="password", placeholder="Paste your token here…")
|
210 |
+
save_token_btn = gr.Button("Save token")
|
211 |
+
token_status = gr.Markdown(value=f"Not logged in – using free quota (max {FREE_REQUESTS})")
|
212 |
+
|
213 |
+
# Handlers to store token
|
214 |
+
def _save_token(tok):
|
215 |
+
return tok or ""
|
216 |
+
|
217 |
+
def _token_status(tok):
|
218 |
+
return "Logged in ✅ Unlimited" if tok else f"Not logged in – using free quota (max {FREE_REQUESTS})"
|
219 |
+
|
220 |
+
save_token_btn.click(_save_token, inputs=token_input, outputs=token_state)
|
221 |
+
save_token_btn.click(_token_status, inputs=token_input, outputs=token_status)
|
222 |
+
|
223 |
+
gr.Markdown(
|
224 |
+
"""
|
225 |
+
# Kontext-Dev LoRA Playground
|
226 |
+
Select one of the available LoRAs from the dropdown, upload an image, tweak the prompt, and generate!
|
227 |
+
"""
|
228 |
+
)
|
229 |
+
|
230 |
+
with gr.Row():
|
231 |
+
# LEFT column – model selection + preview
|
232 |
+
with gr.Column(scale=1):
|
233 |
+
model_dropdown = gr.Dropdown(
|
234 |
+
choices=LORA_MODELS,
|
235 |
+
value=LORA_MODELS[0],
|
236 |
+
label="Select LoRA model",
|
237 |
+
)
|
238 |
+
preview_image = gr.Image(label="Sample image", interactive=False, height=256)
|
239 |
+
trigger_text = gr.Textbox(
|
240 |
+
label="Trigger phrase (suggested)",
|
241 |
+
interactive=False,
|
242 |
+
)
|
243 |
+
|
244 |
+
# RIGHT column – user inputs
|
245 |
+
with gr.Column(scale=1):
|
246 |
+
input_image = gr.Image(
|
247 |
+
label="Input image",
|
248 |
+
type="pil",
|
249 |
+
)
|
250 |
+
prompt_box = gr.Textbox(
|
251 |
+
label="Prompt",
|
252 |
+
placeholder="Describe your transformation…",
|
253 |
+
)
|
254 |
+
guidance = gr.Slider(
|
255 |
+
minimum=1.0,
|
256 |
+
maximum=10.0,
|
257 |
+
value=2.5,
|
258 |
+
step=0.1,
|
259 |
+
label="Guidance scale",
|
260 |
+
)
|
261 |
+
generate_btn = gr.Button("🚀 Generate")
|
262 |
+
output_image = gr.Image(label="Output", interactive=False)
|
263 |
+
quota_display = gr.Markdown(value=f"Free requests remaining: {FREE_REQUESTS}")
|
264 |
+
|
265 |
+
# Showcase Gallery --------------------------------------------------
|
266 |
+
|
267 |
+
gr.Markdown("## ✨ Example outputs from selected LoRAs")
|
268 |
+
|
269 |
+
example_gallery = gr.Gallery(
|
270 |
+
label="Examples",
|
271 |
+
columns=[4],
|
272 |
+
height="auto",
|
273 |
+
elem_id="example_gallery",
|
274 |
+
)
|
275 |
+
|
276 |
+
gallery_data_state = gr.State([])
|
277 |
+
|
278 |
+
# ------------------------------------------------------------------
|
279 |
+
# Callbacks
|
280 |
+
# ------------------------------------------------------------------
|
281 |
+
|
282 |
+
def _update_preview(model_id, _meta=metadata_cache):
|
283 |
+
if model_id in _meta:
|
284 |
+
img_url = _meta[model_id].get("image_url")
|
285 |
+
trig = _meta[model_id].get("trigger_phrase")
|
286 |
+
else:
|
287 |
+
img_url, trig = fetch_preview_and_trigger(model_id)
|
288 |
+
# Fallbacks
|
289 |
+
if trig is None:
|
290 |
+
trig = "(no trigger phrase provided)"
|
291 |
+
return {
|
292 |
+
preview_image: gr.Image(value=img_url) if img_url else gr.Image(value=None),
|
293 |
+
trigger_text: gr.Textbox(value=trig),
|
294 |
+
prompt_box: gr.Textbox(value=trig),
|
295 |
+
}
|
296 |
+
|
297 |
+
model_dropdown.change(_update_preview, inputs=model_dropdown, outputs=[preview_image, trigger_text, prompt_box])
|
298 |
+
|
299 |
+
generate_btn.click(
|
300 |
+
fn=run_lora,
|
301 |
+
inputs=[input_image, prompt_box, model_dropdown, guidance, token_state, request_count_state],
|
302 |
+
outputs=[output_image, request_count_state, quota_display],
|
303 |
+
)
|
304 |
+
|
305 |
+
# Helper to populate gallery once on launch
|
306 |
+
def _load_gallery(_meta=metadata_cache):
|
307 |
+
samples = []
|
308 |
+
for model_id in LORA_MODELS:
|
309 |
+
info = _meta.get(model_id)
|
310 |
+
if info and info.get("image_url"):
|
311 |
+
samples.append([info["image_url"], model_id])
|
312 |
+
# shuffle and take first 12
|
313 |
+
random.shuffle(samples)
|
314 |
+
return samples[:12], samples[:12]
|
315 |
+
|
316 |
+
# Initialise preview and gallery on launch
|
317 |
+
demo.load(_update_preview, inputs=model_dropdown, outputs=[preview_image, trigger_text, prompt_box])
|
318 |
+
demo.load(fn=_load_gallery, inputs=None, outputs=[example_gallery, gallery_data_state])
|
319 |
+
|
320 |
+
# Handle gallery click to update dropdown
|
321 |
+
def _on_gallery_select(evt: gr.SelectData, data):
|
322 |
+
idx = evt.index
|
323 |
+
if idx is None or idx >= len(data):
|
324 |
+
return gr.Dropdown.update()
|
325 |
+
model_id = data[idx][1]
|
326 |
+
return gr.Dropdown.update(value=model_id)
|
327 |
+
|
328 |
+
example_gallery.select(_on_gallery_select, inputs=gallery_data_state, outputs=model_dropdown)
|
329 |
+
|
330 |
+
return demo
|
331 |
+
|
332 |
+
|
333 |
+
def main():
|
334 |
+
demo = build_interface()
|
335 |
+
demo.launch()
|
336 |
+
|
337 |
+
|
338 |
+
if __name__ == "__main__":
|
339 |
+
main()
|