Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
from typing import List | |
from chainlit.types import AskFileResponse | |
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader | |
from aimakerspace.openai_utils.prompts import ( | |
UserRolePrompt, | |
SystemRolePrompt, | |
AssistantRolePrompt, | |
) | |
from aimakerspace.openai_utils.embedding import EmbeddingModel | |
from aimakerspace.vectordatabase import VectorDatabase | |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI | |
import chainlit as cl | |
from qdrant_client import QdrantClient | |
from qdrant_client.models import VectorParams, Distance | |
from chainlit.input_widget import Select | |
from qdrant_client.models import PointStruct | |
#Qdrant client | |
client = None | |
#System Chat Prompt | |
system_template = """\ | |
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer.""" | |
system_role_prompt = SystemRolePrompt(system_template) | |
#User Prompt for chat | |
user_prompt_template = """\ | |
Context: | |
{context} | |
Question: | |
{question} | |
""" | |
user_role_prompt = UserRolePrompt(user_prompt_template) | |
#Categorization of VectorDatabase | |
system_template_db = """\ | |
You are an expert in categorization. Given the last user response determine if he or she wants to use the Qdrant database. If yes return the output single word 'QDrant' without any other phrases. If no return the only the word 'AI Makerspace'. | |
""" | |
system_role_prompt_db = SystemRolePrompt(system_template_db) | |
user_prompt_template_db = "User Input:\n{user_input}" | |
user_role_prompt_db = UserRolePrompt(user_prompt_template) | |
class RetrievalAugmentedQAPipeline: | |
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: | |
self.llm = llm | |
self.vector_db_retriever = vector_db_retriever | |
async def arun_pipeline(self, user_query: str): | |
context_list = self.vector_db_retriever.search_by_text(user_query, k=4) | |
context_prompt = "" | |
for context in context_list: | |
context_prompt += context[0] + "\n" | |
formatted_system_prompt = system_role_prompt.create_message() | |
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt) | |
async def generate_response(): | |
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]): | |
yield chunk | |
return {"response": generate_response(), "context": context_list} | |
class RetrievalAugmentedQAPipelineQdrant: | |
def __init__(self, llm: ChatOpenAI(), vector_db_retriever) -> None: | |
self.llm = llm | |
self.vector_db_retriever = vector_db_retriever | |
self.embedding_model = EmbeddingModel() | |
async def arun_pipeline(self, user_query: str): | |
query_vector = self.embedding_model.get_embedding(user_query) | |
context_list = self.vector_db_retriever.search( | |
collection_name="my_collection", | |
query_vector=query_vector, | |
limit=4 | |
) | |
context_prompt = "" | |
for context in context_list: | |
context_prompt += context.payload['text'] + "\n" | |
formatted_system_prompt = system_role_prompt.create_message() | |
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt) | |
async def generate_response(): | |
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]): | |
yield chunk | |
return {"response": generate_response(), "context": context_list} | |
text_splitter = CharacterTextSplitter() | |
def process_text_file(file: AskFileResponse): | |
import tempfile | |
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file: | |
temp_file_path = temp_file.name | |
with open(temp_file_path, "wb") as f: | |
f.write(file.content) | |
text_loader = TextFileLoader(temp_file_path) | |
documents = text_loader.load_documents() | |
texts = text_splitter.split_texts(documents) | |
return texts | |
def process_pdf_file(file: AskFileResponse): | |
import tempfile | |
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".pdf") as temp_file: | |
temp_file_path = temp_file.name | |
with open(temp_file_path, "wb") as f: | |
f.write(file.content) | |
text_loader = TextFileLoader(temp_file_path) | |
documents = text_loader.load_documents() | |
texts = text_splitter.split_texts(documents) | |
return texts | |
async def initialize_qdrant(text): | |
client = QdrantClient(":memory:") | |
if not client.collection_exists("my_collection"): | |
client.create_collection( | |
collection_name="my_collection", | |
vectors_config=VectorParams(size=1536, distance=Distance.COSINE), | |
) | |
embedding_model = EmbeddingModel() | |
embeddings = await embedding_model.async_get_embeddings(text) | |
i = 0 | |
for text, embedding in zip(text, embeddings): | |
insert(text, np.array(embedding), i, client) | |
i+=1 | |
return client | |
def insert(text, vector, idx, client): | |
point= PointStruct( | |
id=idx, | |
vector=vector.tolist(), | |
payload={"text": text} | |
) | |
client.upsert( | |
collection_name="my_collection", | |
points=[point] | |
) | |
def choose_db(llm, user_input): | |
formatted_system_prompt_db = system_role_prompt_db.create_message() | |
formatted_user_prompt_db = user_role_prompt_db.create_message(question=user_input) | |
return llm.run([formatted_system_prompt_db, formatted_user_prompt_db]) | |
async def on_chat_start(): | |
global client | |
files = None | |
# Wait for the user to upload a file | |
while files == None : | |
files = await cl.AskFileMessage( | |
content="Please upload a Text or PDF file to begin!", | |
accept=["text/plain", "application/pdf"], | |
max_size_mb=2, | |
timeout=180, | |
).send() | |
file = files[0] | |
msg = cl.Message( | |
content=f"Processing `{file.name}`...", disable_human_feedback=True | |
) | |
await msg.send() | |
# load the file | |
if file.name.endswith('.pdf'): | |
texts = process_pdf_file(file) | |
else: | |
texts = process_text_file(file) | |
print(f"Processing {len(texts)} text chunks") | |
chat_openai = ChatOpenAI() | |
res = await cl.AskUserMessage(content="Do you want to use the QDrant vector database or AI Makerspace's?").send() | |
if res: | |
chosen_db = choose_db(chat_openai, res['content']) | |
await cl.Message( | |
content=f"You have chosen {chosen_db}. Please start asking questions!", | |
).send() | |
# Create a chain | |
retrieval_augmented_qa_pipeline = None | |
if chosen_db.lower() == 'qdrant': | |
client = await initialize_qdrant(texts) | |
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipelineQdrant( | |
vector_db_retriever=client, | |
llm=chat_openai | |
) | |
else: | |
vector_db = VectorDatabase() | |
vector_db = await vector_db.abuild_from_list(texts) | |
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( | |
vector_db_retriever=vector_db, | |
llm=chat_openai | |
) | |
# Let the user know that the system is ready | |
msg.content = f"Processing `{file.name}` done. You can now ask questions!" | |
await msg.update() | |
cl.user_session.set("chain", retrieval_augmented_qa_pipeline) | |
async def main(message): | |
chain = cl.user_session.get("chain") | |
msg = cl.Message(content="") | |
result = await chain.arun_pipeline(message.content) | |
async for stream_resp in result["response"]: | |
await msg.stream_token(stream_resp) | |
await msg.send() |