rntc's picture
Replace hardcoded architecture detection with user selection
17f029a
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks
def fields(raw_class):
if hasattr(raw_class, '__dataclass_fields__'):
# For make_dataclass created classes
if raw_class.__dataclass_fields__:
return [field.type for field in raw_class.__dataclass_fields__.values()]
else:
# For regular @dataclass with empty __dataclass_fields__, check __dict__
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')]
# Fallback for non-dataclass
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(("model_type_symbol", ColumnContent("T", "str", True, never_hidden=True)))
auto_eval_column_dict.append(("model", ColumnContent("Model", "markdown", True, never_hidden=True)))
# Average score
auto_eval_column_dict.append(("average", ColumnContent("Average", "number", True)))
#Scores
for task in Tasks:
auto_eval_column_dict.append((task.name, ColumnContent(task.value.col_name, "number", True)))
# Model information - simplified to only essential columns
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
precision = ColumnContent("precision", "str", True)
model_type = ColumnContent("model_type", "str", True)
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
ENCODER = ModelDetails(name="encoder", symbol="πŸ”€") # BERT-like
DECODER = ModelDetails(name="decoder", symbol="πŸ”½") # GPT-like
ENCODER_DECODER = ModelDetails(name="encoder-decoder", symbol="πŸ”„") # T5-like
Unknown = ModelDetails(name="unknown", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type_str):
if "encoder-decoder" in type_str.lower() or "πŸ”„" in type_str:
return ModelType.ENCODER_DECODER
elif "encoder" in type_str.lower() or "πŸ”€" in type_str:
return ModelType.ENCODER
elif "decoder" in type_str.lower() or "πŸ”½" in type_str:
return ModelType.DECODER
return ModelType.Unknown
@staticmethod
def from_config(config):
"""Detect model architecture type from config"""
if hasattr(config, 'model_type'):
model_type = config.model_type.lower()
# Encoder-decoder models
if model_type in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot', 'bigbird_pegasus']:
return ModelType.ENCODER_DECODER
# Decoder-only models (GPT-like)
elif model_type in ['gpt', 'gpt2', 'gpt_neo', 'gpt_neox', 'gptj', 'bloom', 'llama', 'mistral', 'qwen']:
return ModelType.DECODER
# Encoder-only models (BERT-like)
elif model_type in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']:
return ModelType.ENCODER
# Fallback: detect from architecture class name
if hasattr(config, 'architectures') and config.architectures:
arch_name = config.architectures[0].lower()
if any(name in arch_name for name in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']):
return ModelType.ENCODER_DECODER
elif any(name in arch_name for name in ['gpt', 'bloom', 'llama', 'mistral', 'qwen']):
return ModelType.DECODER
elif any(name in arch_name for name in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']):
return ModelType.ENCODER
return ModelType.Unknown
@staticmethod
def from_architecture(architecture):
"""Detect model type from architecture string"""
if not architecture or architecture == "?":
return ModelType.Unknown
arch_lower = architecture.lower()
# Encoder-decoder patterns
if any(pattern in arch_lower for pattern in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']):
return ModelType.ENCODER_DECODER
# Decoder patterns (GPT-like)
elif any(pattern in arch_lower for pattern in ['gpt', 'bloom', 'llama', 'mistral', 'qwen', 'causal']):
return ModelType.DECODER
# Encoder patterns (BERT-like)
elif any(pattern in arch_lower for pattern in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert', 'formaskedlm', 'fortokenclassification', 'forsequenceclassification']):
return ModelType.ENCODER
return ModelType.Unknown
class WeightType(Enum):
Original = ModelDetails("Original")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
@staticmethod
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]