File size: 11,232 Bytes
f1667dd
 
 
 
 
949e6ab
aa997ed
be77c90
f1667dd
f46b0a9
 
f1667dd
 
 
 
 
 
 
 
 
 
e539bb0
f1667dd
 
 
8e403de
 
 
f1667dd
 
 
 
 
 
 
 
 
 
8e403de
 
f1667dd
 
4ef9cef
 
 
 
 
 
 
 
 
 
 
 
 
 
f1667dd
be77c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1667dd
 
 
 
be77c90
f1667dd
1b39b38
 
 
 
 
 
 
 
 
 
 
 
 
 
be77c90
f1667dd
 
2165257
1b39b38
 
77dbb67
be77c90
77dbb67
2165257
c1a3d27
f1667dd
 
be77c90
 
 
f1667dd
 
4ef9cef
f1667dd
 
 
 
f46b0a9
 
 
 
be77c90
f1667dd
 
aa6c7fc
c03347d
aa6c7fc
 
c03347d
 
4ef9cef
c03347d
 
 
 
 
 
aa6c7fc
f1667dd
b52e342
 
 
6f570d6
 
 
b52e342
 
 
 
 
 
 
 
 
 
6f570d6
 
 
 
 
 
 
b52e342
6f570d6
 
 
 
 
b52e342
6f570d6
 
 
 
f1667dd
 
 
 
 
 
 
be77c90
f1667dd
 
 
 
 
 
be77c90
 
f1667dd
949e6ab
 
 
 
 
 
 
 
aa6c7fc
 
f1667dd
 
 
 
 
 
be77c90
aa997ed
 
 
 
 
 
 
 
 
 
 
 
f1667dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from huggingface_hub import HfFileSystem
import pandas as pd
from utils import logger
from datetime import datetime
import threading
import traceback
import json
import re

# NOTE: if caching is an issue, try adding `use_listings_cache=False`
fs = HfFileSystem()

IMPORTANT_MODELS = [
    "auto",
    "bert",  # old but dominant (encoder only)
    "gpt2",  # old (decoder)
    "t5",  # old (encoder-decoder)
    "modernbert",  # (encoder only)
    "vit",  # old (vision) - fixed comma
    "clip",  # old but dominant (vision)
    "detr",  # objection detection, segmentation (vision)
    "table_transformer",  # objection detection (visioin) - maybe just detr?
    "got_ocr2",  # ocr (vision)
    "whisper",  # old but dominant (audio)
    "wav2vec2",  # old (audio)
    "qwen2_audio",  # (audio)
    "speech_t5",  # (audio)
    "csm",  # (audio)
    "llama",  # new and dominant (meta)
    "gemma3",  # new (google)
    "qwen2",  # new (Alibaba)
    "mistral3",  # new (Mistral) - added missing comma
    "qwen2_5_vl",  # new (vision)
    "llava",  # many models from it (vision)
    "smolvlm",  # new (video)
    "internvl",  # new (video)
    "gemma3n",  # new (omnimodal models)
    "qwen2_5_omni",  # new (omnimodal models)
    # "gpt_oss",  # new (quite used)
    "qwen2_5_omni",  # new (omnimodal models)
]

KEYS_TO_KEEP = [
    "success_amd",
    "success_nvidia",
    "skipped_amd",
    "skipped_nvidia",
    "failed_multi_no_amd",
    "failed_multi_no_nvidia",
    "failed_single_no_amd",
    "failed_single_no_nvidia",
    "failures_amd",
    "failures_nvidia",
    "job_link_amd",
    "job_link_nvidia",
]


def log_dataframe_link(link: str) -> str:
    """
    Adds the link to the dataset in the logs, modifies it to get a clockable link and then returns the date of the 
    report.
    """
    logger.info(f"Reading df located at {link}")
    # Make sure the links starts with an http adress
    if link.startswith("hf://"):
        link = "https://huggingface.co/" + link.removeprefix("hf://")
    # Pattern to match transformers_daily_ci followed by any path, then a date (YYYY-MM-DD format)
    pattern = r'transformers_daily_ci(.*?)/(\d{4}-\d{2}-\d{2})'
    match = re.search(pattern, link)
    # Failure case: 
    if not match:
        logger.error("Could not find transformers_daily_ci and.or date in the link")
        return "9999-99-99"
    # Replace the path between with blob/main
    path_between = match.group(1)
    link = link.replace("transformers_daily_ci" + path_between, "transformers_daily_ci/blob/main")
    logger.info(f"Link to data source: {link}")
    # Return the date
    return match.group(2)

def infer_latest_update_msg(date_df_amd: str, date_df_nvidia: str) -> str:
    # Early return if one of the dates is invalid
    if date_df_amd.startswith("9999") and date_df_nvidia.startswith("9999"):
        return "could not find last update time"
    # Warn if dates are not the same
    if date_df_amd != date_df_nvidia:
        logger.warning(f"Different dates found: {date_df_amd} (AMD) vs {date_df_nvidia} (NVIDIA)")
    # Take the latest date and format it
    try:
        latest_date = max(date_df_amd, date_df_nvidia)
        yyyy, mm, dd = latest_date.split("-")
        return f"last updated {mm}/{dd}/{yyyy}"
    except Exception as e:
        logger.error(f"When trying to infer latest date, got error {e}")
        return "could not find last update time"

def read_one_dataframe(json_path: str, device_label: str) -> tuple[pd.DataFrame, str]:
    df_upload_date = log_dataframe_link(json_path)
    df = pd.read_json(json_path, orient="index")
    df.index.name = "model_name"
    df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
    df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
    return df, df_upload_date

def get_first_working_df(file_list: list[str]) -> str:
    for file in file_list:
        job_links = file.rsplit('/', 1)[0] + "/job_links.json"
        try:
            links = pd.read_json(f"hf://{job_links}", typ="series")
            has_one_working_link = any(links.values)
        except Exception as e:
            logger.error(f"Could not read job links from {job_links}: {e}")
            has_one_working_link = False
        if has_one_working_link:
            return file
        logger.warning(f"Skipping {file} as it has no working job links.")
    raise RuntimeError("Could not find any working dataframe in the provided list.")

def get_distant_data() -> tuple[pd.DataFrame, str]:
    # Retrieve AMD dataframe
    amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
    files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True)
    file_amd = get_first_working_df(files_amd)
    df_amd, date_df_amd = read_one_dataframe(f"hf://{file_amd}", "amd")
    # Retrieve NVIDIA dataframe, which pattern should be:
    # hf://datasets/hf-internal-testing`/transformers_daily_ci/raw/main/YYYY-MM-DD/ci_results_run_models_gpu/model_results.json 
    nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json"
    files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True)
    # NOTE: should this be removeprefix instead of lstrip?
    nvidia_path = files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/')
    nvidia_path = "https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/" + nvidia_path
    df_nvidia, date_df_nvidia = read_one_dataframe(nvidia_path, "nvidia")
    # Infer and format the latest df date
    latest_update_msg = infer_latest_update_msg(date_df_amd, date_df_nvidia)
    # Join both dataframes
    joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
    joined = joined[KEYS_TO_KEEP]
    joined.index = joined.index.str.replace("^models_", "", regex=True)
    # Fitler out all but important models
    important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
    filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
    # Warn for ach missing important models
    for model in IMPORTANT_MODELS:
        if model not in filtered_joined.index:
            print(f"[WARNING] Model {model} was missing from index.")            
    return filtered_joined, latest_update_msg


def get_sample_data() -> tuple[pd.DataFrame, str]:
    # Retrieve sample dataframes
    df_amd, _ = read_one_dataframe("sample_amd.json", "amd")
    df_nvidia, _ = read_one_dataframe("sample_nvidia.json", "nvidia")
    # Join both dataframes
    joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
    joined = joined[KEYS_TO_KEEP]
    joined.index = joined.index.str.replace("^models_", "", regex=True)
    # Fitler out all but important models
    important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
    filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
    # Prefix all model names with "sample_"
    filtered_joined.index = "sample_" + filtered_joined.index
    return filtered_joined, "sample data was loaded"

def safe_extract(row: pd.DataFrame, key: str) -> int:
    return int(row.get(key, 0)) if pd.notna(row.get(key, 0)) else 0

def extract_model_data(row: pd.Series) -> tuple[dict[str, int], dict[str, int], int, int, int, int]:
    """Extract and process model data from DataFrame row."""
    # Handle missing values and get counts directly from dataframe
    success_nvidia = safe_extract(row, "success_nvidia")
    success_amd = safe_extract(row, "success_amd")

    skipped_nvidia = safe_extract(row, "skipped_nvidia")
    skipped_amd = safe_extract(row, "skipped_amd")
    
    failed_multi_amd = safe_extract(row, 'failed_multi_no_amd')
    failed_multi_nvidia = safe_extract(row, 'failed_multi_no_nvidia')
    failed_single_amd = safe_extract(row, 'failed_single_no_amd')
    failed_single_nvidia = safe_extract(row, 'failed_single_no_nvidia')
    # Calculate total failures
    total_failed_amd = failed_multi_amd + failed_single_amd
    total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
    # Create stats dictionaries directly from dataframe values
    amd_stats = {
        'passed': success_amd,
        'failed': total_failed_amd,
        'skipped': skipped_amd,
        'error': 0     # Not available in this dataset
    }
    nvidia_stats = {
        'passed': success_nvidia,
        'failed': total_failed_nvidia,
        'skipped': skipped_nvidia,
        'error': 0     # Not available in this dataset
    }
    return amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia



class CIResults:

    def __init__(self):
        self.df = pd.DataFrame()
        self.available_models = []
        self.latest_update_msg = ""

    def load_data(self) -> None:
        """Load data from the data source."""
        # Try loading the distant data, and fall back on sample data for local tinkering
        try:
            logger.info("Loading distant data...")
            new_df, latest_update_msg = get_distant_data()
            self.latest_update_msg = latest_update_msg
        except Exception as e:
            error_msg = [
                "Loading data failed:",
                "-" * 120,
                traceback.format_exc(),
                "-" * 120,
                "Falling back on sample data."
            ]
            logger.error("\n".join(error_msg))
            new_df, latest_update_msg = get_sample_data()
            self.latest_update_msg = latest_update_msg
        # Update attributes
        self.df = new_df
        self.available_models = new_df.index.tolist()
        # Log and return distant load status
        logger.info(f"Data loaded successfully: {len(self.available_models)} models")
        logger.info(f"Models: {self.available_models[:5]}{'...' if len(self.available_models) > 5 else ''}")
        logger.info(f"Latest update message: {self.latest_update_msg}")
        # Log a preview of the df
        msg = {}
        for model in self.available_models[:3]:
            msg[model] = {}
            for col in self.df.columns:
                value = self.df.loc[model, col]
                if not isinstance(value, int):
                    value = str(value)
                    if len(value) > 10:
                        value = value[:10] + "..."
                msg[model][col] = value
        logger.info(json.dumps(msg, indent=4))

    def schedule_data_reload(self):
        """Schedule the next data reload."""
        def reload_data():
            self.load_data()
            # Schedule the next reload in 15 minutes (900 seconds)
            timer = threading.Timer(900.0, reload_data)
            timer.daemon = True  # Dies when main thread dies
            timer.start()
            logger.info("Next data reload scheduled in 15 minutes")

        # Start the first reload timer
        timer = threading.Timer(900.0, reload_data)
        timer.daemon = True
        timer.start()
        logger.info("Data auto-reload scheduled every 15 minutes")