sakshi7502's picture
Upload 64 files
6376749 verified
import os
import sys
from typing import List
import fire
import torch
import argparse
import transformers
from datasets import load_dataset
from typing import List, Optional, Union
from tqdm import tqdm
import sys
from functools import partial, reduce
sys.path.append("../")
from svft.svft_layers import LinearWithSVFT, create_and_replace_modules, get_target_modules_list, replace_svft_with_fused_linear
"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""
sys.path.append(os.path.join(os.getcwd(), "peft/src/"))
from peft import ( # noqa: E402
LoraConfig, BOFTConfig, VeraConfig,
PrefixTuningConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, AutoModel # noqa: F402
def train(
# model/data params
base_model: str = "", # the only required argument
data_path: str = "yahma/alpaca-cleaned",
output_dir: str = "./lora-alpaca",
adapter_name: str = "lora",
load_8bit : bool = False,
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 4,
num_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 2000,
use_gradient_checkpointing: bool = False,
eval_step: int = 200,
save_step: int = 200,
# lora hyperparams
lora_r: int = None,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = None,
# bottleneck adapter hyperparams
bottleneck_size: int = 256,
non_linearity: str = "tanh",
adapter_dropout: float = 0.0,
use_parallel_adapter: bool = False,
use_adapterp: bool = False,
target_modules: List[str] = None,
scaling: Union[float, str] = 1.0,
# prefix tuning hyperparams
num_virtual_tokens: int = 30,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
off_diag: int = 0,
pattern: str = "banded",
fill_orthonormal: bool = False,
):
print(
f"Finetuning model with params:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"use_gradient_checkpointing: {use_gradient_checkpointing}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"bottleneck_size: {bottleneck_size}\n"
f"non_linearity: {non_linearity}\n"
f"adapter_dropout: {adapter_dropout}\n"
f"use_parallel_adapter: {use_parallel_adapter}\n"
f"use_adapterp: {use_adapterp}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"scaling: {scaling}\n"
f"adapter_name: {adapter_name}\n"
f"target_modules: {target_modules}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint}\n"
)
print(base_model)
# assert (
# base_model
# ), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
gradient_accumulation_steps = batch_size // micro_batch_size
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
# Check if parameter passed or if set within environ
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = "CommonsenseReasoning"
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = "all"
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = False
if load_8bit:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map=device_map,
trust_remote_code=True,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=False,
torch_dtype=torch.float32,
device_map={"": int(os.environ.get("LOCAL_RANK") or 0)},
trust_remote_code=True,
#revision="step143000",
)
if model.config.model_type == "llama":
# Due to the name of transformers' LlamaTokenizer, we have to do this
tokenizer = LlamaTokenizer.from_pretrained(base_model)
else:
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
if "chatglm" not in base_model:
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
if "chatglm" in base_model:
return {"input_ids": result["input_ids"], "labels": result["labels"]}
else:
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = generate_prompt(data_point)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = generate_prompt({**data_point, "output": ""})
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
if adapter_name == "lora":
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
elif adapter_name == "dora":
config = LoraConfig(
use_dora=True,
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
elif adapter_name == "boft":
config = BOFTConfig(
boft_block_size=8,
boft_n_butterfly_factor=2,
target_modules=lora_target_modules,
boft_dropout=0.05,
bias="boft_only",
)
elif adapter_name == "boft_r1":
config = BOFTConfig(
boft_block_size=1,
boft_n_butterfly_factor=1,
target_modules=lora_target_modules,
boft_dropout=0.05,
bias="boft_only",
)
elif adapter_name == "vera":
config = VeraConfig(r=lora_r, target_modules=lora_target_modules)
if adapter_name == 'svft':
# for SVFT turn off gradient requirement for all layers
# PEFT library handles this internally
for param in model.parameters():
param.requires_grad = False
print(f"Target Modules: {lora_target_modules}")
assign_svft_layer = partial(LinearWithSVFT,
off_diag=off_diag,
pattern=pattern,
rank=lora_r,
fill_orthonormal=fill_orthonormal)
create_and_replace_modules(model, get_target_modules_list(model, lora_target_modules), assign_svft_layer)
elif adapter_name == "full_ft":
pass
else:
# for baseline peft models
model = get_peft_model(model, config)
if adapter_name == "prefix-tuning":
model.to('cuda')
if data_path.endswith(".json"): # todo: support jsonl
data = load_dataset("json", data_files=data_path)
else:
data = load_dataset(data_path)
print(f"Trainable Parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
print(f"Output Dir: {output_dir}")
if val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
bf16=True,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_step if val_set_size > 0 else None,
save_steps=save_step,
output_dir=output_dir,
save_total_limit=3,
load_best_model_at_end=False if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
#deepspeed="deepspeed.json"
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
if adapter_name not in ['boft', 'svft']:
model = model.bfloat16()
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.generation_config.temperature = 1.0
model.generation_config.top_p = 1.0
if adapter_name == 'svft':
replace_svft_with_fused_linear(model, get_target_modules_list(model, lora_target_modules))
elif adapter_name=="full_ft":
pass
else:
model = model.merge_and_unload()
for param in model.parameters():
param.data = param.data.contiguous()
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
def generate_prompt(data_point):
# sorry about the formatting disaster gotta move fast
if data_point["input"]:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}""" # noqa: E501
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
{data_point["output"]}""" # noqa: E501
def parse_args():
parser = argparse.ArgumentParser(description='Train a model')
# model/data params
parser.add_argument('--base_model', type=str, required=True, help='Base model')
parser.add_argument('--data_path', type=str, default='yahma/alpaca-cleaned', help='Data path')
parser.add_argument('--output_dir', type=str, default='./lora-alpaca', help='Output directory')
parser.add_argument('--adapter_name', type=str, default='lora', help='Adapter name')
parser.add_argument('--load_8bit', action='store_true', help='Load 8-bit')
# training hyperparams
parser.add_argument('--batch_size', type=int, default=128, help='Batch size')
parser.add_argument('--micro_batch_size', type=int, default=4, help='Micro batch size')
parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
parser.add_argument('--learning_rate', type=float, default=3e-4, help='Learning rate')
parser.add_argument('--cutoff_len', type=int, default=256, help='Cutoff length')
parser.add_argument('--val_set_size', type=int, default=2000, help='Validation set size')
parser.add_argument('--use_gradient_checkpointing', action='store_true', help='Use gradient checkpointing')
parser.add_argument('--eval_step', type=int, default=200, help='Evaluation step')
parser.add_argument('--save_step', type=int, default=200, help='Save step')
# lora hyperparams
parser.add_argument('--lora_r', type=int, default=8, help='Lora r')
parser.add_argument('--lora_alpha', type=int, default=16, help='Lora alpha')
parser.add_argument('--lora_dropout', type=float, default=0.05, help='Lora dropout')
parser.add_argument('--lora_target_modules', nargs='+', help='Lora target modules')
# bottleneck adapter hyperparams
parser.add_argument('--bottleneck_size', type=int, default=256, help='Bottleneck size')
parser.add_argument('--non_linearity', type=str, default='tanh', help='Non-linearity')
parser.add_argument('--adapter_dropout', type=float, default=0.0, help='Adapter dropout')
parser.add_argument('--use_parallel_adapter', action='store_true', help='Use parallel adapter')
parser.add_argument('--use_adapterp', action='store_true', help='Use adapterp')
parser.add_argument('--target_modules', nargs='+', help='Target modules')
parser.add_argument('--scaling', type=Union[float, str], default=1.0, help='Scaling')
# prefix tuning hyperparams
parser.add_argument('--num_virtual_tokens', type=int, default=30, help='Number of virtual tokens')
# llm hyperparams
parser.add_argument('--train_on_inputs', action='store_true', help='Train on inputs')
parser.add_argument('--group_by_length', action='store_true', help='Group by length')
# wandb params
parser.add_argument('--wandb_project', type=str, default='', help='Wandb project')
parser.add_argument('--wandb_run_name', type=str, default='', help='Wandb run name')
parser.add_argument('--wandb_watch', type=str, default='', help='Wandb watch')
parser.add_argument('--wandb_log_model', type=str, default='', help='Wandb log model')
parser.add_argument('--resume_from_checkpoint', type=str, help='Resume from checkpoint')
return parser.parse_args()
if __name__ == "__main__":
fire.Fire(train)
# args = parse_args()
# train(**vars(args))