File size: 10,602 Bytes
966e948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# content_analysis.py
import re
from typing import List, Dict, Any
from collections import Counter
import language_tool_python
import traceback
# Import utility from text_utils
from text_utils import convert_markdown_to_plain_text
def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]:
return {term: term.lower() in full_text.lower() for term in search_terms}
def label_authors(full_text: str) -> str:
author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)"
match = re.search(author_line_regex, full_text, re.MULTILINE)
if match:
authors = match.group(1).strip()
return full_text.replace(authors, f"Authors: {authors}")
return full_text
def check_metadata(plain_text: str) -> Dict[str, Any]:
return {
"author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', plain_text)),
"list_of_authors": bool(re.search(r'Authors?:', plain_text, re.IGNORECASE)),
"keywords_list": bool(re.search(r'Keywords?:', plain_text, re.IGNORECASE)),
"word_count": len(plain_text.split()) or "Missing"
}
def check_disclosures(plain_text: str) -> Dict[str, bool]:
search_terms = [
"conflict of interest statement",
"ethics statement",
"funding statement",
"data access statement"
]
results = check_text_presence(plain_text, search_terms)
has_author_contribution = ("author contribution statement" in plain_text.lower() or
"author contributions statement" in plain_text.lower())
results["author contribution statement"] = has_author_contribution
return results
def check_figures_and_tables(plain_text: str) -> Dict[str, bool]:
return {
"figures_with_citations": bool(re.search(r'Figure \d+.*?citation', plain_text, re.IGNORECASE)),
"figures_legends": bool(re.search(r'Figure \d+.*?legend', plain_text, re.IGNORECASE)),
"tables_legends": bool(re.search(r'Table \d+.*?legend', plain_text, re.IGNORECASE))
}
def check_references_summary(plain_text: str) -> Dict[str, Any]:
abstract_candidate = plain_text[:2000]
return {
"old_references": bool(re.search(r'\b19[0-9]{2}\b', plain_text)),
"citations_in_abstract": bool(re.search(r'\[\d+\]', abstract_candidate, re.IGNORECASE)) or \
bool(re.search(r'\bcit(?:ation|ed)\b', abstract_candidate, re.IGNORECASE)),
"reference_count": len(re.findall(r'\[\d+(?:,\s*\d+)*\]', plain_text)),
"self_citations": bool(re.search(r'Self-citation', plain_text, re.IGNORECASE))
}
def check_structure(plain_text: str) -> Dict[str, bool]:
text_lower = plain_text.lower()
return {
"imrad_structure": all(section.lower() in text_lower for section in ["introduction", "method", "result", "discussion"]),
"abstract_structure": "structured abstract" in text_lower
}
def check_language_issues_and_regex(markdown_text_from_pdf: str) -> Dict[str, Any]:
if not markdown_text_from_pdf.strip():
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""}
plain_text_from_markdown = convert_markdown_to_plain_text(markdown_text_from_pdf)
text_for_analysis = plain_text_from_markdown.replace('\n', ' ')
text_for_analysis = re.sub(r'\s+', ' ', text_for_analysis).strip()
if not text_for_analysis:
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""}
text_for_analysis_lower = text_for_analysis.lower()
abstract_match = re.search(r'\babstract\b', text_for_analysis_lower)
content_start_index = abstract_match.start() if abstract_match else 0
if abstract_match: print(f"Found 'abstract' at index {content_start_index}")
else: print(f"Did not find 'abstract', starting language analysis from index 0")
references_match = re.search(r'\breferences\b', text_for_analysis_lower)
bibliography_match = re.search(r'\bbibliography\b', text_for_analysis_lower)
content_end_index = len(text_for_analysis)
if references_match and bibliography_match:
content_end_index = min(references_match.start(), bibliography_match.start())
print(f"Found 'references' at {references_match.start()} and 'bibliography' at {bibliography_match.start()}. Using {content_end_index} as end boundary.")
elif references_match:
content_end_index = references_match.start()
print(f"Found 'references' at {content_end_index}. Using it as end boundary.")
elif bibliography_match:
content_end_index = bibliography_match.start()
print(f"Found 'bibliography' at {content_end_index}. Using it as end boundary.")
else:
print(f"Did not find 'references' or 'bibliography'. Language analysis up to end of text (index {content_end_index}).")
if content_start_index >= content_end_index:
print(f"Warning: Content start index ({content_start_index}) is not before content end index ({content_end_index}). No language issues will be reported from this range.")
tool = None
processed_issues: List[Dict[str, Any]] = []
try:
tool = language_tool_python.LanguageTool('en-US')
raw_lt_matches = tool.check(text_for_analysis)
lt_issues_in_range = 0
for idx, match in enumerate(raw_lt_matches):
if match.ruleId == "EN_SPLIT_WORDS_HYPHEN": continue
if not (content_start_index <= match.offset < content_end_index): continue
lt_issues_in_range +=1
context_str = text_for_analysis[match.offset : match.offset + match.errorLength]
processed_issues.append({
'_internal_id': f"lt_{idx}", 'ruleId': match.ruleId, 'message': match.message,
'context_text': context_str, 'offset_in_text': match.offset, 'error_length': match.errorLength,
'replacements_suggestion': match.replacements[:3] if match.replacements else [],
'category_name': match.category, 'is_mapped_to_pdf': False,
'pdf_coordinates_list': [], 'mapped_page_number': -1
})
print(f"LanguageTool found {len(raw_lt_matches)} raw issues, {lt_issues_in_range} issues within defined content range.")
regex_pattern = r'\b(\w+)\[(\d+)\]'
regex_matches = list(re.finditer(regex_pattern, text_for_analysis))
regex_issues_in_range = 0
for reg_idx, match in enumerate(regex_matches):
if not (content_start_index <= match.start() < content_end_index): continue
regex_issues_in_range += 1
word = match.group(1); number = match.group(2)
processed_issues.append({
'_internal_id': f"regex_{reg_idx}", 'ruleId': "SPACE_BEFORE_BRACKET",
'message': f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.",
'context_text': text_for_analysis[match.start():match.end()],
'offset_in_text': match.start(), 'error_length': match.end() - match.start(),
'replacements_suggestion': [f"{word} [{number}]"], 'category_name': "Formatting",
'is_mapped_to_pdf': False, 'pdf_coordinates_list': [], 'mapped_page_number': -1
})
print(f"Regex check found {len(regex_matches)} raw matches, {regex_issues_in_range} issues within defined content range.")
return {
"total_issues": len(processed_issues), "issues_list": processed_issues,
"text_used_for_analysis": text_for_analysis
}
except Exception as e:
print(f"Error in check_language_issues_and_regex: {e}")
traceback.print_exc()
return {"error": str(e), "total_issues": 0, "issues_list": [], "text_used_for_analysis": text_for_analysis}
finally:
if tool: tool.close()
def check_figure_order(plain_text: str) -> Dict[str, Any]:
figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)'
figure_references_str = re.findall(figure_pattern, plain_text, re.IGNORECASE)
valid_figure_numbers_int = [int(num_str) for num_str in figure_references_str if num_str.isdigit()]
unique_sorted_figures = sorted(list(set(valid_figure_numbers_int)))
is_sequential = all(unique_sorted_figures[i] + 1 == unique_sorted_figures[i+1] for i in range(len(unique_sorted_figures)-1))
missing_figures = []
if unique_sorted_figures:
expected_figures = set(range(1, max(unique_sorted_figures) + 1))
missing_figures = sorted(list(expected_figures - set(unique_sorted_figures)))
counts = Counter(valid_figure_numbers_int)
duplicate_refs = [num for num, count in counts.items() if count > 1]
return {
"sequential_order_of_unique_figures": is_sequential,
"figure_count_unique": len(unique_sorted_figures),
"missing_figures_in_sequence_to_max": missing_figures,
"figure_order_as_encountered": valid_figure_numbers_int,
"duplicate_references_to_same_figure_number": duplicate_refs
}
def check_reference_order(plain_text: str) -> Dict[str, Any]:
reference_pattern = r'\[(\d+)\]'
references_str = re.findall(reference_pattern, plain_text)
ref_numbers_int = [int(ref) for ref in references_str if ref.isdigit()]
max_ref_val = 0
out_of_order_details = []
if ref_numbers_int:
max_ref_val = max(ref_numbers_int)
current_max_seen_in_text = 0
for i, ref in enumerate(ref_numbers_int):
if ref < current_max_seen_in_text :
out_of_order_details.append({
"position_in_text_occurrences": i + 1, "value": ref,
"previous_max_value_seen": current_max_seen_in_text,
"message": f"Reference [{ref}] appeared after a higher reference [{current_max_seen_in_text}] was already cited."
})
current_max_seen_in_text = max(current_max_seen_in_text, ref)
all_expected_refs_up_to_max = set(range(1, max_ref_val + 1)) if max_ref_val > 0 else set()
used_refs_set = set(ref_numbers_int)
missing_refs_in_sequence_to_max = sorted(list(all_expected_refs_up_to_max - used_refs_set))
is_ordered_in_text = all(ref_numbers_int[i] <= ref_numbers_int[i+1] for i in range(len(ref_numbers_int)-1))
return {
"max_reference_number_cited": max_ref_val,
"out_of_order_citations_details": out_of_order_details,
"missing_references_up_to_max_cited": missing_refs_in_sequence_to_max,
"is_citation_order_non_decreasing_in_text": is_ordered_in_text
} |