samyak152002's picture
Create content_analysis.py
966e948 verified
raw
history blame
10.6 kB
# content_analysis.py
import re
from typing import List, Dict, Any
from collections import Counter
import language_tool_python
import traceback
# Import utility from text_utils
from text_utils import convert_markdown_to_plain_text
def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]:
return {term: term.lower() in full_text.lower() for term in search_terms}
def label_authors(full_text: str) -> str:
author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)"
match = re.search(author_line_regex, full_text, re.MULTILINE)
if match:
authors = match.group(1).strip()
return full_text.replace(authors, f"Authors: {authors}")
return full_text
def check_metadata(plain_text: str) -> Dict[str, Any]:
return {
"author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', plain_text)),
"list_of_authors": bool(re.search(r'Authors?:', plain_text, re.IGNORECASE)),
"keywords_list": bool(re.search(r'Keywords?:', plain_text, re.IGNORECASE)),
"word_count": len(plain_text.split()) or "Missing"
}
def check_disclosures(plain_text: str) -> Dict[str, bool]:
search_terms = [
"conflict of interest statement",
"ethics statement",
"funding statement",
"data access statement"
]
results = check_text_presence(plain_text, search_terms)
has_author_contribution = ("author contribution statement" in plain_text.lower() or
"author contributions statement" in plain_text.lower())
results["author contribution statement"] = has_author_contribution
return results
def check_figures_and_tables(plain_text: str) -> Dict[str, bool]:
return {
"figures_with_citations": bool(re.search(r'Figure \d+.*?citation', plain_text, re.IGNORECASE)),
"figures_legends": bool(re.search(r'Figure \d+.*?legend', plain_text, re.IGNORECASE)),
"tables_legends": bool(re.search(r'Table \d+.*?legend', plain_text, re.IGNORECASE))
}
def check_references_summary(plain_text: str) -> Dict[str, Any]:
abstract_candidate = plain_text[:2000]
return {
"old_references": bool(re.search(r'\b19[0-9]{2}\b', plain_text)),
"citations_in_abstract": bool(re.search(r'\[\d+\]', abstract_candidate, re.IGNORECASE)) or \
bool(re.search(r'\bcit(?:ation|ed)\b', abstract_candidate, re.IGNORECASE)),
"reference_count": len(re.findall(r'\[\d+(?:,\s*\d+)*\]', plain_text)),
"self_citations": bool(re.search(r'Self-citation', plain_text, re.IGNORECASE))
}
def check_structure(plain_text: str) -> Dict[str, bool]:
text_lower = plain_text.lower()
return {
"imrad_structure": all(section.lower() in text_lower for section in ["introduction", "method", "result", "discussion"]),
"abstract_structure": "structured abstract" in text_lower
}
def check_language_issues_and_regex(markdown_text_from_pdf: str) -> Dict[str, Any]:
if not markdown_text_from_pdf.strip():
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""}
plain_text_from_markdown = convert_markdown_to_plain_text(markdown_text_from_pdf)
text_for_analysis = plain_text_from_markdown.replace('\n', ' ')
text_for_analysis = re.sub(r'\s+', ' ', text_for_analysis).strip()
if not text_for_analysis:
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""}
text_for_analysis_lower = text_for_analysis.lower()
abstract_match = re.search(r'\babstract\b', text_for_analysis_lower)
content_start_index = abstract_match.start() if abstract_match else 0
if abstract_match: print(f"Found 'abstract' at index {content_start_index}")
else: print(f"Did not find 'abstract', starting language analysis from index 0")
references_match = re.search(r'\breferences\b', text_for_analysis_lower)
bibliography_match = re.search(r'\bbibliography\b', text_for_analysis_lower)
content_end_index = len(text_for_analysis)
if references_match and bibliography_match:
content_end_index = min(references_match.start(), bibliography_match.start())
print(f"Found 'references' at {references_match.start()} and 'bibliography' at {bibliography_match.start()}. Using {content_end_index} as end boundary.")
elif references_match:
content_end_index = references_match.start()
print(f"Found 'references' at {content_end_index}. Using it as end boundary.")
elif bibliography_match:
content_end_index = bibliography_match.start()
print(f"Found 'bibliography' at {content_end_index}. Using it as end boundary.")
else:
print(f"Did not find 'references' or 'bibliography'. Language analysis up to end of text (index {content_end_index}).")
if content_start_index >= content_end_index:
print(f"Warning: Content start index ({content_start_index}) is not before content end index ({content_end_index}). No language issues will be reported from this range.")
tool = None
processed_issues: List[Dict[str, Any]] = []
try:
tool = language_tool_python.LanguageTool('en-US')
raw_lt_matches = tool.check(text_for_analysis)
lt_issues_in_range = 0
for idx, match in enumerate(raw_lt_matches):
if match.ruleId == "EN_SPLIT_WORDS_HYPHEN": continue
if not (content_start_index <= match.offset < content_end_index): continue
lt_issues_in_range +=1
context_str = text_for_analysis[match.offset : match.offset + match.errorLength]
processed_issues.append({
'_internal_id': f"lt_{idx}", 'ruleId': match.ruleId, 'message': match.message,
'context_text': context_str, 'offset_in_text': match.offset, 'error_length': match.errorLength,
'replacements_suggestion': match.replacements[:3] if match.replacements else [],
'category_name': match.category, 'is_mapped_to_pdf': False,
'pdf_coordinates_list': [], 'mapped_page_number': -1
})
print(f"LanguageTool found {len(raw_lt_matches)} raw issues, {lt_issues_in_range} issues within defined content range.")
regex_pattern = r'\b(\w+)\[(\d+)\]'
regex_matches = list(re.finditer(regex_pattern, text_for_analysis))
regex_issues_in_range = 0
for reg_idx, match in enumerate(regex_matches):
if not (content_start_index <= match.start() < content_end_index): continue
regex_issues_in_range += 1
word = match.group(1); number = match.group(2)
processed_issues.append({
'_internal_id': f"regex_{reg_idx}", 'ruleId': "SPACE_BEFORE_BRACKET",
'message': f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.",
'context_text': text_for_analysis[match.start():match.end()],
'offset_in_text': match.start(), 'error_length': match.end() - match.start(),
'replacements_suggestion': [f"{word} [{number}]"], 'category_name': "Formatting",
'is_mapped_to_pdf': False, 'pdf_coordinates_list': [], 'mapped_page_number': -1
})
print(f"Regex check found {len(regex_matches)} raw matches, {regex_issues_in_range} issues within defined content range.")
return {
"total_issues": len(processed_issues), "issues_list": processed_issues,
"text_used_for_analysis": text_for_analysis
}
except Exception as e:
print(f"Error in check_language_issues_and_regex: {e}")
traceback.print_exc()
return {"error": str(e), "total_issues": 0, "issues_list": [], "text_used_for_analysis": text_for_analysis}
finally:
if tool: tool.close()
def check_figure_order(plain_text: str) -> Dict[str, Any]:
figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)'
figure_references_str = re.findall(figure_pattern, plain_text, re.IGNORECASE)
valid_figure_numbers_int = [int(num_str) for num_str in figure_references_str if num_str.isdigit()]
unique_sorted_figures = sorted(list(set(valid_figure_numbers_int)))
is_sequential = all(unique_sorted_figures[i] + 1 == unique_sorted_figures[i+1] for i in range(len(unique_sorted_figures)-1))
missing_figures = []
if unique_sorted_figures:
expected_figures = set(range(1, max(unique_sorted_figures) + 1))
missing_figures = sorted(list(expected_figures - set(unique_sorted_figures)))
counts = Counter(valid_figure_numbers_int)
duplicate_refs = [num for num, count in counts.items() if count > 1]
return {
"sequential_order_of_unique_figures": is_sequential,
"figure_count_unique": len(unique_sorted_figures),
"missing_figures_in_sequence_to_max": missing_figures,
"figure_order_as_encountered": valid_figure_numbers_int,
"duplicate_references_to_same_figure_number": duplicate_refs
}
def check_reference_order(plain_text: str) -> Dict[str, Any]:
reference_pattern = r'\[(\d+)\]'
references_str = re.findall(reference_pattern, plain_text)
ref_numbers_int = [int(ref) for ref in references_str if ref.isdigit()]
max_ref_val = 0
out_of_order_details = []
if ref_numbers_int:
max_ref_val = max(ref_numbers_int)
current_max_seen_in_text = 0
for i, ref in enumerate(ref_numbers_int):
if ref < current_max_seen_in_text :
out_of_order_details.append({
"position_in_text_occurrences": i + 1, "value": ref,
"previous_max_value_seen": current_max_seen_in_text,
"message": f"Reference [{ref}] appeared after a higher reference [{current_max_seen_in_text}] was already cited."
})
current_max_seen_in_text = max(current_max_seen_in_text, ref)
all_expected_refs_up_to_max = set(range(1, max_ref_val + 1)) if max_ref_val > 0 else set()
used_refs_set = set(ref_numbers_int)
missing_refs_in_sequence_to_max = sorted(list(all_expected_refs_up_to_max - used_refs_set))
is_ordered_in_text = all(ref_numbers_int[i] <= ref_numbers_int[i+1] for i in range(len(ref_numbers_int)-1))
return {
"max_reference_number_cited": max_ref_val,
"out_of_order_citations_details": out_of_order_details,
"missing_references_up_to_max_cited": missing_refs_in_sequence_to_max,
"is_citation_order_non_decreasing_in_text": is_ordered_in_text
}