|
""" |
|
Dashboard Narrator - Powered by OpenRouter.ai |
|
A tool to analyze dashboard PDFs and generate comprehensive reports. |
|
""" |
|
|
|
|
|
import os |
|
import time |
|
import threading |
|
import io |
|
import base64 |
|
import json |
|
import requests |
|
from PyPDF2 import PdfReader |
|
from PIL import Image |
|
import markdown |
|
from weasyprint import HTML, CSS |
|
from weasyprint.text.fonts import FontConfiguration |
|
from pdf2image import convert_from_bytes |
|
import gradio as gr |
|
|
|
|
|
class ProgressTracker: |
|
def __init__(self): |
|
self.progress = 0 |
|
self.message = "Ready" |
|
self.is_processing = False |
|
self.lock = threading.Lock() |
|
|
|
def update(self, progress, message="Processing..."): |
|
with self.lock: |
|
self.progress = progress |
|
self.message = message |
|
|
|
def get_status(self): |
|
with self.lock: |
|
return f"{self.message} ({self.progress:.1f}%)" |
|
|
|
def start_processing(self): |
|
with self.lock: |
|
self.is_processing = True |
|
self.progress = 0 |
|
self.message = "Starting..." |
|
|
|
def end_processing(self): |
|
with self.lock: |
|
self.is_processing = False |
|
self.progress = 100 |
|
self.message = "Complete" |
|
|
|
|
|
progress_tracker = ProgressTracker() |
|
output_status = None |
|
|
|
|
|
def update_progress(): |
|
global output_status |
|
while progress_tracker.is_processing: |
|
status = progress_tracker.get_status() |
|
if output_status is not None: |
|
output_status.update(value=status) |
|
time.sleep(0.5) |
|
return |
|
|
|
|
|
class OpenRouterClient: |
|
def __init__(self, api_key): |
|
self.api_key = api_key |
|
self.base_url = "https://openrouter.ai/api/v1" |
|
|
|
def messages_create(self, model, messages, system=None, temperature=0.7, max_tokens=None): |
|
"""Send messages to the OpenRouter API and return the response""" |
|
url = f"{self.base_url}/chat/completions" |
|
|
|
headers = { |
|
"Authorization": f"Bearer {self.api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
payload = { |
|
"model": model, |
|
"messages": messages, |
|
"temperature": temperature, |
|
} |
|
|
|
|
|
if system: |
|
payload["messages"].insert(0, {"role": "system", "content": system}) |
|
|
|
|
|
if max_tokens: |
|
payload["max_tokens"] = max_tokens |
|
|
|
try: |
|
response = requests.post(url, headers=headers, json=payload) |
|
response.raise_for_status() |
|
|
|
result = response.json() |
|
|
|
|
|
formatted_response = type('obj', (object,), { |
|
'content': [ |
|
type('obj', (object,), { |
|
'text': result['choices'][0]['message']['content'] |
|
}) |
|
] |
|
}) |
|
|
|
return formatted_response |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"API request error: {str(e)}") |
|
if hasattr(e, 'response') and e.response: |
|
print(f"Response: {e.response.text}") |
|
raise |
|
|
|
|
|
SUPPORTED_LANGUAGES = { |
|
"italiano": { |
|
"code": "it", |
|
"name": "Italiano", |
|
"report_title": "Analisi Dashboard", |
|
"report_subtitle": "Report Dettagliato", |
|
"date_label": "Data", |
|
"system_prompt": "Sei un esperto analista di business intelligence specializzato nell'interpretazione di dashboard e dati visualizzati. Fornisci analisi in italiano approfondite e insight actionable basati sui dati forniti.", |
|
"section_title": "ANALISI SEZIONE", |
|
"multi_doc_title": "ANALISI DASHBOARD {index}" |
|
}, |
|
"english": { |
|
"code": "en", |
|
"name": "English", |
|
"report_title": "Dashboard Analysis", |
|
"report_subtitle": "Detailed Report", |
|
"date_label": "Date", |
|
"system_prompt": "You are an expert business intelligence analyst specialized in interpreting dashboards and data visualizations. Provide in-depth analysis and actionable insights based on the data provided.", |
|
"section_title": "SECTION ANALYSIS", |
|
"multi_doc_title": "DASHBOARD {index} ANALYSIS" |
|
}, |
|
"franΓ§ais": { |
|
"code": "fr", |
|
"name": "FranΓ§ais", |
|
"report_title": "Analyse de Tableau de Bord", |
|
"report_subtitle": "Rapport DΓ©taillΓ©", |
|
"date_label": "Date", |
|
"system_prompt": "Vous Γͺtes un analyste expert en business intelligence spΓ©cialisΓ© dans l'interprΓ©tation des tableaux de bord et des visualisations de donnΓ©es. Fournissez en franΓ§ais une analyse approfondie et des insights actionnables basΓ©s sur les donnΓ©es fournies.", |
|
"section_title": "ANALYSE DE SECTION", |
|
"multi_doc_title": "ANALYSE DU TABLEAU DE BORD {index}" |
|
}, |
|
"espaΓ±ol": { |
|
"code": "es", |
|
"name": "EspaΓ±ol", |
|
"report_title": "AnΓ‘lisis de Dashboard", |
|
"report_subtitle": "Informe Detallado", |
|
"date_label": "Fecha", |
|
"system_prompt": "Eres un analista experto en inteligencia empresarial especializado en interpretar dashboards y visualizaciones de datos. Proporciona en espaΓ±ol un anΓ‘lisis en profundidad e insights accionables basados en los datos proporcionados.", |
|
"section_title": "ANΓLISIS DE SECCIΓN", |
|
"multi_doc_title": "ANΓLISIS DEL DASHBOARD {index}" |
|
}, |
|
"deutsch": { |
|
"code": "de", |
|
"name": "Deutsch", |
|
"report_title": "Dashboard-Analyse", |
|
"report_subtitle": "Detaillierter Bericht", |
|
"date_label": "Datum", |
|
"system_prompt": "Sie sind ein Experte fΓΌr Business Intelligence-Analyse, der auf die Interpretation von Dashboards und Datenvisualisierungen spezialisiert ist. Bieten Sie auf Deutsch eine eingehende Analyse und umsetzbare Erkenntnisse auf Grundlage der bereitgestellten Daten.", |
|
"section_title": "ABSCHNITTSANALYSE", |
|
"multi_doc_title": "DASHBOARD-ANALYSE {index}" |
|
} |
|
} |
|
|
|
|
|
DEFAULT_MODEL = "meta-llama/llama-4-scout:free" |
|
OPENROUTER_MODELS = [ |
|
"meta-llama/llama-4-scout:free", |
|
"anthropic/claude-3-haiku:20240307", |
|
"anthropic/claude-3-sonnet:20240229", |
|
"anthropic/claude-3-opus:20240229", |
|
"google/gemini-pro-1.5:latest", |
|
"mistralai/mistral-large-latest" |
|
] |
|
|
|
|
|
def extract_text_from_pdf(pdf_bytes): |
|
"""Extract text from a PDF file.""" |
|
try: |
|
pdf_reader = PdfReader(io.BytesIO(pdf_bytes)) |
|
text = "" |
|
for page_num in range(len(pdf_reader.pages)): |
|
extracted = pdf_reader.pages[page_num].extract_text() |
|
if extracted: |
|
text += extracted + "\n" |
|
return text |
|
except Exception as e: |
|
print(f"Error extracting text from PDF: {str(e)}") |
|
return "" |
|
|
|
def divide_image_vertically(image, num_sections): |
|
"""Divide an image vertically into sections.""" |
|
width, height = image.size |
|
section_height = height // num_sections |
|
sections = [] |
|
for i in range(num_sections): |
|
top = i * section_height |
|
bottom = height if i == num_sections - 1 else (i + 1) * section_height |
|
section = image.crop((0, top, width, bottom)) |
|
sections.append(section) |
|
print(f"Section {i+1}: size {section.width}x{section.height} pixels") |
|
return sections |
|
|
|
def encode_image_with_resize(image, max_size_mb=4.5): |
|
"""Encode an image in base64, resizing if necessary.""" |
|
max_bytes = max_size_mb * 1024 * 1024 |
|
img_byte_arr = io.BytesIO() |
|
image.save(img_byte_arr, format='PNG') |
|
current_size = len(img_byte_arr.getvalue()) |
|
if current_size > max_bytes: |
|
scale_factor = (max_bytes / current_size) ** 0.5 |
|
new_width = int(image.width * scale_factor) |
|
new_height = int(image.height * scale_factor) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
img_byte_arr = io.BytesIO() |
|
resized_image.save(img_byte_arr, format='PNG', optimize=True) |
|
print(f"Image resized from {current_size/1024/1024:.2f}MB to {len(img_byte_arr.getvalue())/1024/1024:.2f}MB") |
|
image = resized_image |
|
else: |
|
print(f"Image size acceptable: {current_size/1024/1024:.2f}MB") |
|
buffer = io.BytesIO() |
|
image.save(buffer, format="PNG", optimize=True) |
|
return base64.b64encode(buffer.getvalue()).decode("utf-8") |
|
|
|
|
|
def analyze_dashboard_section(client, model, section_number, total_sections, image_section, full_text, language, goal_description=None): |
|
"""Analyze a vertical section of the dashboard in the specified language.""" |
|
print(f"Analyzing section {section_number}/{total_sections} in {language['name']} using {model}...") |
|
try: |
|
encoded_image = encode_image_with_resize(image_section) |
|
except Exception as e: |
|
print(f"Error encoding section {section_number}: {str(e)}") |
|
return f"Error analyzing section {section_number}: {str(e)}" |
|
|
|
section_prompt = f""" |
|
Act as a senior data analyst examining this dashboard section for Customer Experience purpose.\n |
|
Your analysis will be shared with top executives to inform about Customer Experience improvements and customer satisfaction level.\n |
|
# Dashboard Analysis - Section {section_number} of {total_sections}\n |
|
You are analyzing section {section_number} of {total_sections} of a long vertical dashboard. This is part of a broader analysis.\n |
|
{f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n |
|
For this specific section:\n |
|
1. Describe what these visualizations show, including their type (e.g., bar chart, line graph) and the data they represent\n |
|
2. Quantitatively analyze the data, noting specific values, percentages, and numeric trends\n |
|
3. Identify significant patterns, anomalies, or outliers visible in the data\n |
|
4. Provide 2-3 actionable insights based on this analysis, explaining their business implications\n |
|
5. Suggest possible reasons for any notable trends or unexpected findings\n |
|
Focus exclusively on the visible section. Don't reference or speculate about unseen dashboard elements.\n |
|
Answer completely in {language['name']}.\n\n |
|
# Text extracted from the complete dashboard:\n |
|
{full_text[:10000]} |
|
|
|
# Image of this dashboard section: |
|
[BASE64 IMAGE: {encoded_image[:20]}...] |
|
This is a dashboard visualization showing various metrics and charts. Please analyze the content visible in this image. |
|
""" |
|
|
|
try: |
|
response = client.messages_create( |
|
model=model, |
|
messages=[{"role": "user", "content": section_prompt}], |
|
system=language['system_prompt'], |
|
temperature=0.1, |
|
max_tokens=10000 |
|
) |
|
return response.content[0].text |
|
except Exception as e: |
|
print(f"Error analyzing section {section_number}: {str(e)}") |
|
return f"Error analyzing section {section_number}: {str(e)}" |
|
|
|
def create_comprehensive_report(client, model, section_analyses, full_text, language, goal_description=None): |
|
"""Create a unified comprehensive report based on individual section analyses.""" |
|
print(f"Generating final comprehensive report in {language['name']} using {model}...") |
|
comprehensive_prompt = f""" |
|
# Comprehensive Dashboard Analysis Request |
|
You have analyzed a long vertical dashboard in multiple sections. Now you need to create a unified and coherent report based on all the partial analyses.\n |
|
{f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n |
|
Here are the analyses of the individual dashboard sections:\n |
|
{section_analyses}\n\n |
|
Based on these partial analyses, generate a professional, structured, and coherent report that includes:\n |
|
1. Executive Summary - Include key metrics, major findings, and critical recommendations (limit to 1 page equivalent)\n |
|
2. Dashboard Performance Overview - Add a section that evaluates the overall health metrics before diving into categories\n |
|
3 Detailed Analysis by Category - Keep this, it's essential\n |
|
4 Trend Analysis - Broaden from just temporal to include cross-category patterns\n |
|
5 Critical Issues and Opportunities - Combine anomalies with positive outliers to provide balanced insights\n |
|
6 Strategic Implications and Recommendations - Consolidate your insights and recommendations into a single, stronger section\n |
|
7 Implementation Roadmap - Convert your conclusions into a prioritized action plan with timeframes\n |
|
8 Appendix: Monitoring Improvements - Move the monitoring suggestions to an appendix unless they're a primary focus\n\n |
|
Integrate information from all sections to create a coherent and complete report.\n\n |
|
# Text extracted from the complete dashboard:\n |
|
{full_text[:10000]} |
|
""" |
|
try: |
|
response = client.messages_create( |
|
model=model, |
|
messages=[{"role": "user", "content": comprehensive_prompt}], |
|
system=language['system_prompt'], |
|
temperature=0.1, |
|
max_tokens=10000 |
|
) |
|
return response.content[0].text |
|
except Exception as e: |
|
print(f"Error creating comprehensive report: {str(e)}") |
|
return f"Error creating comprehensive report: {str(e)}" |
|
|
|
def create_multi_dashboard_comparative_report(client, model, individual_reports, language, goal_description=None): |
|
"""Create a comparative report analyzing multiple dashboards together.""" |
|
print(f"Generating comparative report for multiple dashboards in {language['name']} using {model}...") |
|
comparative_prompt = f""" |
|
# Multi-Dashboard Comparative Analysis Request |
|
You have analyzed multiple dashboards individually. Now you need to create a comparative analysis report that identifies patterns, similarities, differences, and insights across all dashboards. |
|
{f"The analysis objective is: {goal_description}" if goal_description else ""} |
|
Here are the analyses of the individual dashboards: |
|
{individual_reports} |
|
Based on these individual analyses, generate a professional, structured comparative report that includes: |
|
1. Executive Overview of All Dashboards |
|
2. Comparative Analysis of Key Metrics |
|
3. Cross-Dashboard Patterns and Trends |
|
4. Notable Differences Between Dashboards |
|
5. Integrated Insights from All Sources |
|
6. Comprehensive Strategic Recommendations |
|
7. Suggestions for Cross-Dashboard Monitoring Improvements |
|
8. Conclusions and Integrated Next Steps |
|
Integrate information from all dashboards to create a coherent comparative report. |
|
""" |
|
try: |
|
response = client.messages_create( |
|
model=model, |
|
messages=[{"role": "user", "content": comparative_prompt}], |
|
system=language['system_prompt'], |
|
temperature=0.1, |
|
max_tokens=12000 |
|
) |
|
return response.content[0].text |
|
except Exception as e: |
|
print(f"Error creating comparative report: {str(e)}") |
|
return f"Error creating comparative report: {str(e)}" |
|
|
|
def markdown_to_pdf(markdown_content, output_filename, language): |
|
"""Convert Markdown content to a well-formatted PDF.""" |
|
print(f"Converting Markdown report to PDF in {language['name']}...") |
|
css = CSS(string=''' |
|
@page { margin: 1.5cm; } |
|
body { font-family: Arial, sans-serif; line-height: 1.5; font-size: 11pt; } |
|
h1 { color: #2c3e50; font-size: 22pt; margin-top: 1cm; margin-bottom: 0.5cm; page-break-after: avoid; } |
|
h2 { color: #3498db; font-size: 16pt; margin-top: 0.8cm; margin-bottom: 0.3cm; page-break-after: avoid; } |
|
p { margin-bottom: 0.3cm; text-align: justify; } |
|
''') |
|
today = time.strftime("%d/%m/%Y") |
|
cover_page = f""" |
|
<div style="text-align: center; height: 100vh; display: flex; flex-direction: column; justify-content: center; align-items: center;"> |
|
<h1 style="font-size: 26pt; color: #2c3e50;">{language['report_title']}</h1> |
|
<h2 style="font-size: 14pt; color: #7f8c8d;">{language['report_subtitle']}</h2> |
|
<p style="font-size: 12pt; color: #7f8c8d;">{language['date_label']}: {today}</p> |
|
</div> |
|
<div style="page-break-after: always;"></div> |
|
""" |
|
html_content = markdown.markdown(markdown_content, extensions=['tables', 'fenced_code']) |
|
full_html = f""" |
|
<!DOCTYPE html> |
|
<html lang="{language['code']}"> |
|
<head><meta charset="UTF-8"><title>{language['report_title']}</title></head> |
|
<body>{cover_page}{html_content}</body> |
|
</html> |
|
""" |
|
font_config = FontConfiguration() |
|
HTML(string=full_html).write_pdf(output_filename, stylesheets=[css], font_config=font_config) |
|
print(f"PDF created successfully: {output_filename}") |
|
return output_filename |
|
|
|
def analyze_vertical_dashboard(client, model, pdf_bytes, language, goal_description=None, num_sections=4, dashboard_index=None): |
|
"""Analyze a vertical dashboard by dividing it into sections.""" |
|
dashboard_marker = f" {dashboard_index}" if dashboard_index is not None else "" |
|
total_dashboards = progress_tracker.total_dashboards if hasattr(progress_tracker, 'total_dashboards') else 1 |
|
dashboard_progress_base = ((dashboard_index - 1) / total_dashboards * 100) if dashboard_index is not None else 0 |
|
dashboard_progress_step = (100 / total_dashboards) if total_dashboards > 0 else 100 |
|
|
|
progress_tracker.update(dashboard_progress_base, f"πΌοΈ Analyzing dashboard{dashboard_marker}...") |
|
print(f"πΌοΈ Analyzing dashboard{dashboard_marker}...") |
|
|
|
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.1, f"π Extracting text from dashboard{dashboard_marker}...") |
|
print(f"π Extracting full text from PDF...") |
|
full_text = extract_text_from_pdf(pdf_bytes) |
|
if not full_text or len(full_text.strip()) < 100: |
|
print("β οΈ Limited text extracted from PDF. Analysis will rely primarily on images.") |
|
else: |
|
print(f"β
Extracted {len(full_text)} characters of text from PDF.") |
|
|
|
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.2, f"πΌοΈ Converting dashboard{dashboard_marker} to images...") |
|
print("πΌοΈ Converting PDF to images...") |
|
try: |
|
pdf_images = convert_from_bytes(pdf_bytes, dpi=150) |
|
if not pdf_images: |
|
print("β Unable to convert PDF to images.") |
|
return None, "Error: Unable to convert PDF to images." |
|
print(f"β
PDF converted to {len(pdf_images)} image pages.") |
|
main_image = pdf_images[0] |
|
print(f"Main image size: {main_image.width}x{main_image.height} pixels") |
|
|
|
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.3, f"Dividing dashboard{dashboard_marker} into {num_sections} sections...") |
|
print(f"Dividing image into {num_sections} vertical sections...") |
|
image_sections = divide_image_vertically(main_image, num_sections) |
|
print(f"β
Image divided into {len(image_sections)} sections.") |
|
except Exception as e: |
|
print(f"β Error converting or dividing PDF: {str(e)}") |
|
return None, f"Error: {str(e)}" |
|
|
|
section_analyses = [] |
|
section_progress_step = dashboard_progress_step * 0.4 / len(image_sections) |
|
|
|
for i, section in enumerate(image_sections): |
|
section_progress = dashboard_progress_base + dashboard_progress_step * 0.3 + section_progress_step * i |
|
progress_tracker.update(section_progress, f"Analyzing section {i+1}/{len(image_sections)} of dashboard{dashboard_marker}...") |
|
|
|
print(f"\n{'='*50}") |
|
print(f"Processing section {i+1}/{len(image_sections)}...") |
|
section_result = analyze_dashboard_section( |
|
client, |
|
model, |
|
i+1, |
|
len(image_sections), |
|
section, |
|
full_text, |
|
language, |
|
goal_description |
|
) |
|
if section_result: |
|
section_analyses.append(f"\n## {language['section_title']} {i+1}\n{section_result}") |
|
print(f"β
Analysis of section {i+1} completed.") |
|
else: |
|
section_analyses.append(f"\n## {language['section_title']} {i+1}\nAnalysis not available for this section.") |
|
print(f"β οΈ Analysis of section {i+1} not available.") |
|
|
|
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.7, f"Generating final report for dashboard{dashboard_marker}...") |
|
print("\n" + "="*50) |
|
print(f"All section analyses completed. Generating report...") |
|
combined_sections = "\n".join(section_analyses) |
|
|
|
|
|
if dashboard_index is not None: |
|
dashboard_header = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n" |
|
combined_sections = dashboard_header + combined_sections |
|
|
|
final_report = create_comprehensive_report(client, model, combined_sections, full_text, language, goal_description) |
|
|
|
|
|
if dashboard_index is not None and dashboard_index > 1: |
|
|
|
if not final_report.startswith(f"# {language['multi_doc_title'].format(index=dashboard_index)}"): |
|
final_report = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n{final_report}" |
|
|
|
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.9, f"Finalizing dashboard{dashboard_marker} analysis...") |
|
return final_report, combined_sections |
|
|
|
def get_available_models(api_key): |
|
"""Get available models from OpenRouter API.""" |
|
try: |
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
response = requests.get("https://openrouter.ai/api/v1/models", headers=headers) |
|
if response.status_code == 200: |
|
models_data = response.json() |
|
available_models = [model["id"] for model in models_data.get("data", [])] |
|
|
|
sorted_models = [model for model in OPENROUTER_MODELS if model in available_models] |
|
|
|
additional_models = [model for model in available_models if model not in OPENROUTER_MODELS] |
|
additional_models.sort() |
|
all_models = sorted_models + additional_models |
|
return all_models |
|
else: |
|
print(f"Error fetching models: {response.status_code}") |
|
return OPENROUTER_MODELS |
|
except Exception as e: |
|
print(f"Error fetching models: {str(e)}") |
|
return OPENROUTER_MODELS |
|
|
|
def process_multiple_dashboards(api_key, pdf_files, language_code="it", goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None): |
|
"""Process multiple dashboard PDFs and create individual and comparative reports.""" |
|
|
|
progress_tracker.start_processing() |
|
progress_tracker.total_dashboards = len(pdf_files) |
|
|
|
|
|
progress_tracker.update(1, "Initializing analysis...") |
|
language = None |
|
for lang_key, lang_data in SUPPORTED_LANGUAGES.items(): |
|
if lang_data['code'] == language_code: |
|
language = lang_data |
|
break |
|
if not language: |
|
print(f"β οΈ Language '{language_code}' not supported. Using Italian as fallback.") |
|
language = SUPPORTED_LANGUAGES['italiano'] |
|
print(f"π Selected language: {language['name']}") |
|
|
|
if not api_key: |
|
progress_tracker.update(100, "β οΈ Error: API key not provided.") |
|
progress_tracker.end_processing() |
|
print("β οΈ Error: API key not provided.") |
|
return None, None, "Error: API key not provided." |
|
|
|
try: |
|
client = OpenRouterClient(api_key=api_key) |
|
print("β
OpenRouter client initialized successfully.") |
|
except Exception as e: |
|
progress_tracker.update(100, f"β Error initializing client: {str(e)}") |
|
progress_tracker.end_processing() |
|
print(f"β Error initializing client: {str(e)}") |
|
return None, None, f"Error: {str(e)}" |
|
|
|
|
|
model = custom_model if model_name == "custom" and custom_model else model_name |
|
print(f"π€ Using model: {model}") |
|
|
|
|
|
individual_reports = [] |
|
individual_analyses = [] |
|
|
|
for i, pdf_bytes in enumerate(pdf_files): |
|
dashboard_progress_base = (i / len(pdf_files) * 80) |
|
progress_tracker.update(dashboard_progress_base, f"Processing dashboard {i+1}/{len(pdf_files)}...") |
|
print(f"\n{'#'*60}") |
|
print(f"Processing dashboard {i+1}/{len(pdf_files)}...") |
|
|
|
report, analysis = analyze_vertical_dashboard( |
|
client=client, |
|
model=model, |
|
pdf_bytes=pdf_bytes, |
|
language=language, |
|
goal_description=goal_description, |
|
num_sections=num_sections, |
|
dashboard_index=i+1 |
|
) |
|
|
|
if report: |
|
individual_reports.append(report) |
|
individual_analyses.append(analysis) |
|
print(f"β
Analysis of dashboard {i+1} completed.") |
|
else: |
|
print(f"β Analysis of dashboard {i+1} failed.") |
|
|
|
|
|
tmp_dir = "/tmp" |
|
if not os.path.exists(tmp_dir): |
|
os.makedirs(tmp_dir, exist_ok=True) |
|
|
|
|
|
progress_tracker.update(80, "Generating output files...") |
|
timestamp = time.strftime("%Y%m%d_%H%M%S") |
|
output_files = [] |
|
|
|
|
|
for i, report in enumerate(individual_reports): |
|
file_progress = 80 + (i / len(individual_reports) * 10) |
|
progress_tracker.update(file_progress, f"Creating files for dashboard {i+1}...") |
|
|
|
md_filename = os.path.join(tmp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.md") |
|
pdf_filename = os.path.join(tmp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.pdf") |
|
|
|
with open(md_filename, 'w', encoding='utf-8') as f: |
|
f.write(report) |
|
output_files.append(md_filename) |
|
|
|
try: |
|
pdf_path = markdown_to_pdf(report, pdf_filename, language) |
|
output_files.append(pdf_filename) |
|
except Exception as e: |
|
print(f"β οΈ Error converting dashboard {i+1} to PDF: {str(e)}") |
|
|
|
|
|
if len(individual_reports) > 1: |
|
progress_tracker.update(90, "Creating comparative analysis...") |
|
print("\n" + "#"*60) |
|
print("Creating comparative analysis of all dashboards...") |
|
|
|
|
|
all_reports_content = "\n\n".join(individual_reports) |
|
|
|
|
|
comparative_report = create_multi_dashboard_comparative_report( |
|
client=client, |
|
model=model, |
|
individual_reports=all_reports_content, |
|
language=language, |
|
goal_description=goal_description |
|
) |
|
|
|
|
|
progress_tracker.update(95, "Saving comparative analysis files...") |
|
comparative_md = os.path.join(tmp_dir, f"comparative_analysis_{language['code']}_{timestamp}.md") |
|
comparative_pdf = os.path.join(tmp_dir, f"comparative_analysis_{language['code']}_{timestamp}.pdf") |
|
|
|
with open(comparative_md, 'w', encoding='utf-8') as f: |
|
f.write(comparative_report) |
|
output_files.append(comparative_md) |
|
|
|
try: |
|
pdf_path = markdown_to_pdf(comparative_report, comparative_pdf, language) |
|
output_files.append(comparative_pdf) |
|
except Exception as e: |
|
print(f"β οΈ Error converting comparative report to PDF: {str(e)}") |
|
|
|
|
|
progress_tracker.update(100, "β
Analysis completed successfully!") |
|
progress_tracker.end_processing() |
|
|
|
|
|
combined_content = "\n\n---\n\n".join(individual_reports) |
|
if len(individual_reports) > 1 and 'comparative_report' in locals(): |
|
combined_content += f"\n\n{'='*80}\n\n# COMPARATIVE ANALYSIS\n\n{comparative_report}" |