dere-cbai
Add collaborative perception interface
5fc4576
import gradio as gr
# Sample data for demonstration
perception_papers = [
{
"title": "CoSDH: Communication-Efficient Collaborative Perception",
"venue": "CVPR 2025",
"description": "Novel approach for efficient collaborative perception using supply-demand awareness.",
"link": "https://arxiv.org/abs/2503.03430"
},
{
"title": "V2X-R: Cooperative LiDAR-4D Radar Fusion",
"venue": "CVPR 2025",
"description": "Cooperative fusion of LiDAR and 4D radar sensors for enhanced 3D object detection.",
"link": "https://arxiv.org/abs/2411.08402"
},
{
"title": "Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps",
"venue": "NeurIPS 2022",
"description": "Groundbreaking work on efficient collaborative perception using spatial confidence maps.",
"link": "https://openreview.net/forum?id=dLL4KXzKUpS"
},
{
"title": "STAMP: Scalable Task-Agnostic Collaborative Perception",
"venue": "ICLR 2025",
"description": "Framework for scalable collaborative perception that is both task and model agnostic.",
"link": "https://openreview.net/forum?id=8NdNniulYE"
},
{
"title": "CoBEVFlow: Robust Asynchronous Collaborative 3D Detection",
"venue": "NeurIPS 2023",
"description": "Handles temporal asynchrony in collaborative perception using bird's eye view flow.",
"link": "https://openreview.net/forum?id=UHIDdtxmVS"
}
]
datasets_data = [
["DAIR-V2X", "2022", "Real-world", "V2I", "71K frames", "3D boxes, Infrastructure"],
["V2V4Real", "2023", "Real-world", "V2V", "20K frames", "Real V2V, Highway"],
["TUMTraf-V2X", "2024", "Real-world", "V2X", "2K sequences", "Dense labels, Urban"],
["OPV2V", "2022", "Simulation", "V2V", "Large-scale", "CARLA, Multi-agent"],
["V2X-Sim", "2021", "Simulation", "Multi", "Scalable", "Multi-agent, Collaborative"],
["DOLPHINS", "2024", "Simulation", "UAV", "UAV swarms", "AirSim, Multi-UAV"]
]
def create_paper_card(paper):
return f"""
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; margin: 10px 0; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<div style="background: #667eea; color: white; padding: 5px 10px; border-radius: 15px; display: inline-block; font-size: 0.8em; margin-bottom: 10px;">
{paper['venue']}
</div>
<h3 style="color: #333; margin: 10px 0;">{paper['title']}</h3>
<p style="color: #666; line-height: 1.5; margin-bottom: 15px;">{paper['description']}</p>
<a href="{paper['link']}" target="_blank" style="background: #667eea; color: white; padding: 8px 15px; border-radius: 5px; text-decoration: none; font-size: 0.9em;">
๐Ÿ“„ Read Paper
</a>
</div>
"""
# Custom CSS
custom_css = """
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 40px 20px;
border-radius: 15px;
margin-bottom: 30px;
}
"""
# Create the interface
with gr.Blocks(
title="๐Ÿค– Awesome Multi-Agent Collaborative Perception",
theme=gr.themes.Soft(),
css=custom_css
) as demo:
# Header
gr.HTML("""
<div class="main-header">
<h1 style="font-size: 2.5rem; margin-bottom: 10px;">๐Ÿค– Awesome Multi-Agent Collaborative Perception</h1>
<p style="font-size: 1.2rem; opacity: 0.9;">Explore cutting-edge resources for Multi-Agent Collaborative Perception, Prediction, and Planning</p>
<div style="display: flex; justify-content: center; gap: 30px; margin-top: 20px; flex-wrap: wrap;">
<div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
<div style="font-size: 1.5rem; font-weight: bold;">200+</div>
<div>Papers</div>
</div>
<div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
<div style="font-size: 1.5rem; font-weight: bold;">25+</div>
<div>Datasets</div>
</div>
<div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
<div style="font-size: 1.5rem; font-weight: bold;">50+</div>
<div>Code Repos</div>
</div>
<div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
<div style="font-size: 1.5rem; font-weight: bold;">2025</div>
<div>Updated</div>
</div>
</div>
</div>
""")
# Main navigation tabs
with gr.Tabs():
with gr.Tab("๐Ÿ” Perception"):
gr.Markdown("## Multi-Agent Collaborative Perception Papers")
gr.Markdown("*Latest research in collaborative sensing, 3D object detection, and V2X communication*")
# Create paper cards
papers_html = "".join([create_paper_card(paper) for paper in perception_papers])
gr.HTML(papers_html)
gr.Markdown("""
### ๐Ÿ”„ Key Communication Strategies:
- **Early Fusion**: Raw sensor data sharing
- **Late Fusion**: Detection-level information exchange
- **Intermediate Fusion**: Feature-level collaboration
- **Selective Communication**: Confidence-based data sharing
""")
with gr.Tab("๐Ÿ“Š Datasets"):
gr.Markdown("## Datasets & Benchmarks")
gr.Markdown("*Comprehensive collection of real-world and simulation datasets*")
gr.Dataframe(
value=datasets_data,
headers=["Dataset", "Year", "Type", "Agents", "Size", "Features"],
datatype=["str", "str", "str", "str", "str", "str"],
interactive=False
)
gr.Markdown("""
### ๐ŸŒŸ Notable Features:
- **DAIR-V2X**: First real-world V2I collaborative perception dataset with infrastructure sensors
- **V2V4Real**: Real vehicle-to-vehicle communication dataset collected on highways
- **TUMTraf-V2X**: Dense annotations for urban collaborative perception scenarios
- **OPV2V**: Large-scale simulation benchmark built on CARLA platform
- **V2X-Sim**: Comprehensive multi-agent simulation with customizable scenarios
""")
with gr.Tab("๐Ÿ“ Tracking"):
gr.Markdown("## Multi-Object Tracking & State Estimation")
gr.Markdown("*Collaborative tracking across distributed agents with uncertainty quantification*")
gr.HTML("""
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #4ECDC4;">MOT-CUP</h3>
<p>Multi-Object Tracking with Conformal Uncertainty Propagation</p>
<a href="https://arxiv.org/abs/2303.14346" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
</div>
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #4ECDC4;">DMSTrack</h3>
<p>Probabilistic 3D Multi-Object Cooperative Tracking (ICRA 2024)</p>
<a href="https://arxiv.org/abs/2309.14655" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
</div>
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #4ECDC4;">CoDynTrust</h3>
<p>Dynamic Feature Trust for Robust Asynchronous Collaborative Perception (ICRA 2025)</p>
<a href="https://arxiv.org/abs/2502.08169" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
</div>
</div>
""")
gr.Markdown("""
### ๐ŸŽฏ Key Challenges:
- **Temporal Asynchrony**: Handling different sensor timestamps and communication delays
- **Uncertainty Quantification**: Reliable confidence estimation across multiple agents
- **Data Association**: Multi-agent correspondence and track management
- **Scalability**: Maintaining performance with increasing number of agents
""")
with gr.Tab("๐Ÿ”ฎ Prediction"):
gr.Markdown("## Trajectory Forecasting & Motion Prediction")
gr.Markdown("*Cooperative prediction for autonomous systems and multi-agent coordination*")
gr.HTML("""
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #45B7D1;">V2X-Graph</h3>
<p>Learning Cooperative Trajectory Representations (NeurIPS 2024)</p>
<a href="https://arxiv.org/abs/2311.00371" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
</div>
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #45B7D1;">Co-MTP</h3>
<p>Cooperative Multi-Temporal Prediction Framework (ICRA 2025)</p>
<a href="https://arxiv.org/abs/2502.16589" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
</div>
</div>
""")
gr.HTML("""
<div style="background: #f8f9fa; border-radius: 10px; padding: 20px; margin: 20px 0;">
<h3>๐Ÿง  Key Approaches:</h3>
<ul style="line-height: 1.8;">
<li><strong>Graph Neural Networks</strong>: Modeling agent interactions and social behaviors</li>
<li><strong>Transformer Architectures</strong>: Attention-based prediction with long-range dependencies</li>
<li><strong>Multi-Modal Fusion</strong>: Combining LiDAR, camera, and communication data</li>
<li><strong>Uncertainty Quantification</strong>: Reliable confidence estimation for safety-critical applications</li>
</ul>
</div>
""")
with gr.Tab("โš™๏ธ Methods"):
gr.Markdown("## Methods & Techniques")
gr.Markdown("*Core methodologies for communication, robustness, and learning in collaborative systems*")
with gr.Row():
with gr.Column():
gr.Markdown("""
### ๐Ÿ“ก Communication Strategies
- **Bandwidth Optimization**: Compression and selective sharing
- **Protocol Design**: V2V, V2I, V2X communication standards
- **Network Topology**: Centralized vs. distributed architectures
- **Quality of Service**: Latency and reliability management
""")
with gr.Column():
gr.Markdown("""
### ๐Ÿ›ก๏ธ Robustness Approaches
- **Byzantine Fault Tolerance**: Handling adversarial agents
- **Uncertainty Handling**: Robust fusion under noise
- **Privacy Preservation**: Secure multi-party computation
- **Malicious Agent Detection**: CP-Guard framework (AAAI 2025)
""")
gr.HTML("""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; padding: 20px; margin: 20px 0;">
<h3>๐Ÿง  Learning Paradigms</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px; margin-top: 15px;">
<div>โ€ข <strong>Federated Learning</strong>: Distributed model training</div>
<div>โ€ข <strong>Transfer Learning</strong>: Cross-domain adaptation</div>
<div>โ€ข <strong>Meta-Learning</strong>: Quick adaptation to new scenarios</div>
<div>โ€ข <strong>Heterogeneous Learning</strong>: HEAL framework (ICLR 2024)</div>
</div>
</div>
""")
with gr.Tab("๐Ÿ›๏ธ Conferences"):
gr.Markdown("## Top Venues & Publication Trends")
gr.Markdown("*Premier conferences and emerging research directions in collaborative perception*")
conference_data = [
["CVPR 2025", "5+", "End-to-end systems, robustness"],
["ICLR 2025", "3+", "Learning representations, scalability"],
["AAAI 2025", "4+", "AI applications, defense mechanisms"],
["ICRA 2025", "6+", "Robotics applications, real-world deployment"],
["NeurIPS 2024", "2+", "Theoretical foundations, novel architectures"]
]
gr.Dataframe(
value=conference_data,
headers=["Conference", "Papers", "Focus Areas"],
datatype=["str", "str", "str"],
interactive=False
)
gr.Markdown("""
### ๐Ÿ“Š Research Trends (2024-2025):
- **Communication Efficiency**: 40% increase in bandwidth-aware methods
- **Robustness & Security**: Emerging focus on adversarial robustness (15+ papers)
- **Real-World Deployment**: Growing emphasis on practical systems and field tests
- **Heterogeneous Systems**: Multi-modal and multi-agent diversity becoming standard
- **End-to-End Learning**: Integration of perception, prediction, and planning
""")
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 40px; padding: 30px; background: #f8f9fa; border-radius: 10px;">
<h3>๐Ÿค Contributing</h3>
<p>We welcome contributions! Please submit papers, datasets, and code repositories via GitHub.</p>
<div style="margin-top: 20px;">
<a href="https://github.com/your-username/awesome-multi-agent-collaborative-perception" target="_blank"
style="background: #667eea; color: white; padding: 10px 20px; border-radius: 5px; text-decoration: none; margin: 5px;">
๐Ÿ“š GitHub Repository
</a>
<a href="https://huggingface.co/spaces/your-username/awesome-multi-agent-collaborative-perception" target="_blank"
style="background: #ff6b6b; color: white; padding: 10px 20px; border-radius: 5px; text-decoration: none; margin: 5px;">
๐Ÿค— Hugging Face Space
</a>
</div>
<p style="margin-top: 20px; color: #666;">Made with โค๏ธ for the Collaborative Perception Community</p>
</div>
""")
if __name__ == "__main__":
demo.launch()