Spaces:
Running
Running
import cv2 | |
import insightface | |
from insightface.app import FaceAnalysis | |
import os | |
class FaceSwapper: | |
def __init__(self): | |
self.app = FaceAnalysis(name='buffalo_l') | |
self.app.prepare(ctx_id=0, det_size=(640, 640)) | |
self.swapper = insightface.model_zoo.get_model( | |
'inswapper_128.onnx', download=True, download_zip=True | |
) | |
def swap_faces(self, source_path, source_face_idx, target_path, target_face_idx): | |
source_img = cv2.imread(source_path) | |
target_img = cv2.imread(target_path) | |
if source_img is None or target_img is None: | |
raise ValueError("Could not read one or both images") | |
source_faces = self.app.get(source_img) | |
target_faces = self.app.get(target_img) | |
source_faces = sorted(source_faces, key=lambda x: x.bbox[0]) | |
target_faces = sorted(target_faces, key=lambda x: x.bbox[0]) | |
if len(source_faces) < source_face_idx or source_face_idx < 1: | |
raise ValueError(f"Source image contains {len(source_faces)} faces, but requested face {source_face_idx}") | |
if len(target_faces) < target_face_idx or target_face_idx < 1: | |
raise ValueError(f"Target image contains {len(target_faces)} faces, but requested face {target_face_idx}") | |
source_face = source_faces[source_face_idx - 1] | |
target_face = target_faces[target_face_idx - 1] | |
result = self.swapper.get(target_img, target_face, source_face, paste_back=True) | |
return result | |
def count_faces(self, img_path): | |
""" | |
Counts the number of faces in the given image file. | |
""" | |
img = cv2.imread(img_path) | |
# Use your face detector here. For example, with OpenCV's Haar cascade: | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
faces = face_cascade.detectMultiScale(gray, 1.1, 4) | |
return len(faces) | |
def main(): | |
# Paths relative to root | |
source_path = os.path.join("SinglePhoto", "data_src.jpg") | |
target_path = os.path.join("SinglePhoto", "data_dst.jpg") | |
output_dir = os.path.join("SinglePhoto", "output") | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
swapper = FaceSwapper() | |
try: | |
# Ask user for target_face_idx, default to 1 if no input or invalid input | |
try: | |
user_input = input("Enter the target face index (starting from 1, default is 1): ") | |
target_face_idx = int(user_input) if user_input.strip() else 1 | |
if target_face_idx < 1: | |
print("Invalid index. Using default value 1.") | |
target_face_idx = 1 | |
except ValueError: | |
print("Invalid input. Using default value 1.") | |
target_face_idx = 1 | |
try: | |
result = swapper.swap_faces( | |
source_path=source_path, | |
source_face_idx=1, | |
target_path=target_path, | |
target_face_idx=target_face_idx | |
) | |
except ValueError as ve: | |
if "Target image contains" in str(ve): | |
print(f"Target face idx {target_face_idx} not found, trying with idx 1.") | |
result = swapper.swap_faces( | |
source_path=source_path, | |
source_face_idx=1, | |
target_path=target_path, | |
target_face_idx=1 | |
) | |
else: | |
raise ve | |
output_path = os.path.join(output_dir, "swapped_face.jpg") | |
cv2.imwrite(output_path, result) | |
print(f"Face swap completed successfully. Result saved to: {output_path}") | |
except Exception as e: | |
print(f"Error occurred: {str(e)}") | |
if __name__ == "__main__": | |
main() |