Sigrid De los Santos
Remove remaining binary file for Hugging Face
9df4cc0
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import argparse
import re
import logging
import transformers # noqa: F401
from transformers import pipeline, set_seed
from transformers import AutoConfig, OPTForCausalLM, AutoTokenizer, LlamaForCausalLM, LlamaTokenizer
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--path",
type=str,
help="Directory containing trained actor model")
parser.add_argument(
"--max_new_tokens",
type=int,
default=128,
help="Maximum new tokens to generate per response",
)
args = parser.parse_args()
return args
def get_generator(path):
if 'llama' in path:
tokenizer = LlamaTokenizer.from_pretrained(path, fast_tokenizer=True)
tokenizer.pad_token = tokenizer.eos_token
model_config = AutoConfig.from_pretrained(path)
model = LlamaForCausalLM.from_pretrained(path,
from_tf=bool(".ckpt" in path),
config=model_config, device_map='auto', load_in_8bit=True)
model.config.end_token_id = tokenizer.eos_token_id
model.config.pad_token_id = model.config.eos_token_id
model.resize_token_embeddings(len(tokenizer))
generator = pipeline("text-generation",
model=model,
tokenizer=tokenizer)
else:
tokenizer = AutoTokenizer.from_pretrained(path, fast_tokenizer=True)
tokenizer.pad_token = tokenizer.eos_token
model_config = AutoConfig.from_pretrained(path)
model = OPTForCausalLM.from_pretrained(path,
from_tf=bool(".ckpt" in path),
config=model_config, device_map='auto', load_in_8bit=True)
model.config.end_token_id = tokenizer.eos_token_id
model.config.pad_token_id = model.config.eos_token_id
model.resize_token_embeddings(len(tokenizer))
generator = pipeline("text-generation",
model=model,
tokenizer=tokenizer)
return generator
def get_user_input(user_input):
tmp = input("Enter input (type 'quit' to exit, 'clear' to clean memory): ")
new_inputs = f"Human: {tmp}\n Assistant: "
user_input += f" {new_inputs}"
return user_input, tmp == "quit", tmp == "clear"
def get_model_response(generator, user_input, max_new_tokens):
response = generator(user_input, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.7)
return response
def process_response(response, num_rounds):
output = str(response[0]["generated_text"])
# output = output.replace("<|endoftext|></s>", "")
output = output.replace("<|endoftext|>", "")
output = output.replace("</s>", "")
all_positions = [m.start() for m in re.finditer("Human: ", output)]
place_of_second_q = -1
if len(all_positions) > num_rounds:
place_of_second_q = all_positions[num_rounds]
if place_of_second_q != -1:
output = output[0:place_of_second_q]
return output
def main(args):
generator = get_generator(args.path)
set_seed(42)
user_input = ""
num_rounds = 0
while True:
num_rounds += 1
user_input, quit, clear = get_user_input(user_input)
if quit:
break
if clear:
user_input, num_rounds = "", 0
continue
response = get_model_response(generator, user_input,
args.max_new_tokens)
output = process_response(response, num_rounds)
print("-" * 30 + f" Round {num_rounds} " + "-" * 30)
print(f"{output}")
user_input = f"{output}\n\n"
if __name__ == "__main__":
# Silence warnings about `max_new_tokens` and `max_length` being set
logging.getLogger("transformers").setLevel(logging.ERROR)
args = parse_args()
main(args)
# Example:
"""
Human: what is internet explorer?
Assistant:
Internet Explorer is an internet browser developed by Microsoft. It is primarily used for browsing the web, but can also be used to run some applications. Internet Explorer is often considered the best and most popular internet browser currently available, though there are many other options available.
Human: what is edge?
Assistant:
Edge is a newer version of the Microsoft internet browser, developed by Microsoft. It is focused on improving performance and security, and offers a more modern user interface. Edge is currently the most popular internet browser on the market, and is also used heavily by Microsoft employees.
"""