Spaces:
Sleeping
Sleeping
""" | |
Most of this code comes from the timm library. | |
We tried to disentangle from the timm library version. | |
Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
""" | |
import collections | |
import logging | |
import math | |
import os | |
import warnings | |
from collections import OrderedDict | |
from functools import partial | |
from itertools import repeat | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from models.frame_passt.vit_helpers import (DropPath, trunc_normal_, | |
build_model_with_cfg, adapt_input_conv) | |
_logger = logging.getLogger() | |
# From PyTorch internals | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): | |
return tuple(x) | |
return tuple(repeat(x, n)) | |
return parse | |
to_2tuple = _ntuple(2) | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) | |
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# patch models (weights from official Google JAX impl) | |
'vit_tiny_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_tiny_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_small_patch32_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_small_patch32_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_small_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_small_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_base_patch32_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_base_patch32_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_base_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'), | |
'vit_base_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_large_patch32_224': _cfg( | |
url='', # no official model weights for this combo, only for in21k | |
), | |
'vit_large_patch32_384': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_large_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz'), | |
'vit_large_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
# patch models, imagenet21k (weights from official Google JAX impl) | |
'vit_tiny_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_small_patch32_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_small_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_base_patch32_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_base_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_large_patch32_224_in21k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth', | |
num_classes=21843), | |
'vit_large_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz', | |
num_classes=21843), | |
'vit_huge_patch14_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz', | |
hf_hub='timm/vit_huge_patch14_224_in21k', | |
num_classes=21843), | |
# SAM trained models (https://arxiv.org/abs/2106.01548) | |
'vit_base_patch32_sam_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz'), | |
'vit_base_patch16_sam_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz'), | |
# deit models (FB weights) | |
'deit_tiny_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), | |
'deit_small_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), | |
'deit_base_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), | |
'deit_base_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0), | |
'deit_tiny_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')), | |
'deit_small_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')), | |
'deit_base_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')), | |
'deit_base_distilled_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0, | |
classifier=('head', 'head_dist')), | |
# ViT ImageNet-21K-P pretraining by MILL | |
'vit_base_patch16_224_miil_in21k': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth', | |
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221, | |
), | |
'vit_base_patch16_224_miil': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm' | |
'/vit_base_patch16_224_1k_miil_84_4.pth', | |
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', | |
), | |
# PaSST | |
'passt_s_swa_p16_128_ap476': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.1-audioset/passt-s-f128-p16-s10-ap.476-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_kd_p16_128_ap486': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v.0.0.9/passt-s-kd-ap.486.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_l_kd_p16_128_ap47': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v.0.0.10/passt-l-kd-ap.47.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_swa_p16_128_ap4761': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s10-ap.4761-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_p16_128_ap472': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s10-ap.472.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_p16_s16_128_ap468': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s16-ap.468.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_swa_p16_s16_128_ap473': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s16-ap.473-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_swa_p16_s14_128_ap471': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s14-ap.471-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_p16_s14_128_ap469': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s14-ap.469.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_swa_p16_s12_128_ap473': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s12-ap.473-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_p16_s12_128_ap470': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s12-ap.470.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_swa_f128_stfthop100_p16_s10_ap473': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.3-audioset/passt-s-f128-stfthop100-p16-s10-ap.473-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 3200), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt_s_swa_f128_stfthop160_p16_s10_ap473': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.3-audioset/passt-s-f128-stfthop160-p16-s10-ap.473-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 2000), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt-s-f128-20sec-p16-s10-ap474-swa': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.5/passt-s-f128-20sec-p16-s10-ap.474-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 2000), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'passt-s-f128-30sec-p16-s10-ap473-swa': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.5/passt-s-f128-30sec-p16-s10-ap.473-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 3000), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=527), | |
'openmic2008_passt_u_f128_p16_s10_ap85_swa': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.4-openmic/openmic2008.passt-u-f128-p16-s10-ap.85-swa.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 3200), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=20), | |
'openmic2008_passt_u_f128_p16_s10_ap85 ': _cfg( | |
url='https://github.com/kkoutini/PaSST/releases/download/v0.0.4-openmic/openmic2008.passt-u-f128-p16-s10-ap.85.pt', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 2000), crop_pct=1.0, | |
classifier=('head.1', 'head_dist'), num_classes=20), | |
} | |
class Mlp(nn.Module): | |
""" MLP as used in Vision Transformer, MLP-Mixer and related networks | |
""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
first_RUN = True | |
PLUS1_TRICK = False | |
class PatchEmbed(nn.Module): | |
""" 2D Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, in_chans=1, frame_nr=1, stride=1, overlap=1, embed_dim=768, norm_layer=None): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
frame_nr = frame_nr | |
stride = stride | |
self.img_size = img_size | |
self.frame_nr = frame_nr | |
self.stride = stride | |
self.seq_len = int(img_size[1]) // frame_nr | |
self.num_patches = self.seq_len // stride | |
self.embed_dim = embed_dim | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=(int(img_size[0]), stride + overlap), | |
stride=stride, padding=(0, 1)) # 128 x 2 kernel | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
B, C, F, T = x.shape | |
if not (F == self.img_size[0] and abs(T - self.img_size[1]) <= 1): # allows for a difference of 1 | |
warnings.warn(f"Input image size ({F}*{T}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") | |
x = self.proj(x)[:, :, :, 1:] # B embed_dim 1 T (F=1) | |
x = self.norm(x) | |
if first_RUN: print("self.norm(x)", x.size()) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = attn_drop | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
x = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_drop, | |
is_causal=False, scale=self.scale) | |
x = x.transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PaSST(nn.Module): | |
""" | |
Based on the implementation of Vision Transformer in timm library. | |
Take a look at the get_model function, adapting the weights of pretrained imagenet models. | |
""" | |
def __init__(self, img_size=(128, 998), | |
in_chans=1, num_classes=527, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, | |
act_layer=None, weight_init='', | |
frame_patchout=300, frame_nr=1, pos_embed_length=1000): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
distilled (bool): model includes a distillation token and head as in DeiT models | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
embed_layer (nn.Module): patch embedding layer | |
norm_layer: (nn.Module): normalization layer | |
act_layer: (nn.Module): activation layer | |
weight_init: (str): weight init scheme | |
frame_patchout (int): number of frames to patch out | |
frame_nr (int): the second dimension of the proj-convolution kernel | |
pos_embed_length (int): length of the positional embedding | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_tokens = 2 if distilled else 1 | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.act_layer = act_layer() | |
self.in_chans = in_chans | |
self.frame_patchout = frame_patchout | |
self.pos_embed_len = pos_embed_length | |
# these three convolution are different compared to the vanilla passt | |
self.conv_in_1 = nn.Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) | |
self.conv_in_2 = nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) | |
self.conv_in_3 = nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) # 64 instead of 4 | |
img_size = (img_size[0], pos_embed_length) # 128, 250 | |
self.patch_embed = embed_layer( | |
img_size=img_size, in_chans=in_chans, frame_nr=frame_nr, stride=frame_nr, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None | |
# PaSST | |
# refer to https://arxiv.org/abs/2110.05069 Section 2 | |
self.new_pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) # for C and D tokens | |
self.freq_new_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 1, 1)) # | f | |
self.time_new_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 1, self.pos_embed_len)) # __ t | |
#### | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential(*[ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, | |
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Representation layer | |
if representation_size and not distilled: | |
self.num_features = representation_size | |
self.pre_logits = nn.Sequential(OrderedDict([ | |
('fc', nn.Linear(embed_dim, representation_size)), | |
('act', nn.Tanh()) | |
])) | |
else: | |
self.pre_logits = nn.Identity() | |
self.init_weights(weight_init) | |
def init_weights(self, mode=''): | |
assert mode in ('jax', 'jax_nlhb', 'nlhb', ''), f"mode: {mode}" | |
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. | |
trunc_normal_(self.new_pos_embed, std=.02) | |
trunc_normal_(self.freq_new_pos_embed, std=.02) | |
trunc_normal_(self.time_new_pos_embed, std=.02) | |
if self.dist_token is not None: | |
trunc_normal_(self.dist_token, std=.02) | |
if mode.startswith('jax'): | |
# leave cls token as zeros to match jax impl | |
raise RuntimeError("Not supported yet") | |
else: | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(_init_vit_weights) | |
def _init_weights(self, m): | |
# this fn left here for compat with downstream users | |
_init_vit_weights(m) | |
def no_weight_decay(self): | |
return {'new_pos_embed', 'freq_new_pos_embed', 'time_new_pos_embed', 'cls_token', 'dist_token'} | |
def forward_features(self, x): | |
global first_RUN # not jit friendly? use trace instead | |
# some 2D convolutions | |
f_dim = x.size(2) # 128 | |
x = self.act_layer(self.conv_in_1(x)) | |
x = self.act_layer(self.conv_in_2(x)) | |
x = self.act_layer(self.conv_in_3(x)) | |
if first_RUN: print("after convs", x.size()) | |
x = x.reshape(x.shape[0], (x.shape[1] * x.shape[2]) // f_dim, f_dim, x.shape[3]) | |
if first_RUN: print("after reshape", x.size()) | |
x = self.patch_embed(x) # [b, e, f, t] | |
B_dim, E_dim, F_dim, T_dim = x.shape # slow | |
if first_RUN: print(" patch_embed : ", x.shape) | |
# Adding Time/Freq information | |
if first_RUN: print(" self.time_new_pos_embed.shape", self.time_new_pos_embed.shape) | |
time_new_pos_embed = self.time_new_pos_embed | |
if x.shape[-1] < time_new_pos_embed.shape[-1]: | |
if self.training: | |
toffset = torch.randint(1 + time_new_pos_embed.shape[-1] - x.shape[-1], (1,)).item() | |
if first_RUN: print(f" CUT with randomoffset={toffset} time_new_pos_embed.shape", | |
time_new_pos_embed.shape) | |
time_new_pos_embed = time_new_pos_embed[:, :, :, toffset:toffset + x.shape[-1]] | |
else: | |
time_new_pos_embed = time_new_pos_embed[:, :, :, :x.shape[-1]] | |
if first_RUN: print(" CUT time_new_pos_embed.shape", time_new_pos_embed.shape) | |
else: | |
# warnings.warn( | |
# f"the patches shape:{x.shape} are larger than the expected time encodings {time_new_pos_embed.shape}, x will be cut") | |
x = x[:, :, :, :time_new_pos_embed.shape[-1]] | |
x = x + time_new_pos_embed | |
if first_RUN: print(" self.freq_new_pos_embed.shape", self.freq_new_pos_embed.shape) | |
x = x + self.freq_new_pos_embed | |
# Structured Patchout https://arxiv.org/abs/2110.05069 Section 2.2 | |
if self.training and self.frame_patchout: | |
if first_RUN: print(f"X Before frame Patchout of {self.frame_patchout} ", x.size()) | |
# ([1, 768, 1, 82]) | |
random_indices = torch.randperm(T_dim)[:T_dim - self.frame_patchout].sort().values | |
x = x[:, :, :, random_indices] | |
if first_RUN: print("X after frame Patchout", x.size()) | |
x = x.flatten(2).transpose(1, 2) | |
# Add the C/D tokens | |
if first_RUN: print(" self.new_pos_embed.shape", self.new_pos_embed.shape) | |
cls_tokens = self.cls_token.expand(B_dim, -1, -1) + self.new_pos_embed[:, :1, :] | |
if first_RUN: print(" self.cls_tokens.shape", cls_tokens.shape) | |
if self.dist_token is None: | |
x = torch.cat((cls_tokens, x), dim=1) | |
else: | |
dist_token = self.dist_token.expand(B_dim, -1, -1) + self.new_pos_embed[:, 1:, :] | |
if first_RUN: print(" self.dist_token.shape", dist_token.shape) | |
x = torch.cat((cls_tokens, dist_token, x), dim=1) | |
if first_RUN: print(" final sequence x", x.shape) | |
x = self.pos_drop(x) | |
x = self.blocks(x) | |
if first_RUN: print(f" after {len(self.blocks)} atten blocks x", x.shape) | |
x = self.norm(x) | |
return x | |
def forward(self, x): | |
global first_RUN | |
if first_RUN: print("x", x.size()) | |
x = self.forward_features(x) | |
c, x = x[:, :2].mean(1), x[:, 2:] | |
if first_RUN: print("x after forward_features", x.size()) | |
first_RUN = False | |
return x | |
def load_model(self, path, wandb_id): | |
ckpt_path = os.path.join(path, wandb_id + ".ckpt") | |
pretrained_weights = torch.load(ckpt_path, map_location="cpu")["state_dict"] | |
pretrained_weights = {k[10:]: v for k, v in pretrained_weights.items() if k[:10] == "net.model."} | |
self.load_state_dict(pretrained_weights) | |
print("Loaded model successfully. Wandb_id:", wandb_id) | |
def _init_vit_weights(module: nn.Module, name: str = '', head_bias: float = 0., jax_impl: bool = False): | |
""" ViT weight initialization | |
* When called without n, head_bias, jax_impl args it will behave exactly the same | |
as my original init for compatibility with prev hparam / downstream use cases (ie DeiT). | |
* When called w/ valid n (module name) and jax_impl=True, will (hopefully) match JAX impl | |
""" | |
if isinstance(module, nn.Linear): | |
if name.startswith('head'): | |
nn.init.zeros_(module.weight) | |
nn.init.constant_(module.bias, head_bias) | |
elif name.startswith('pre_logits'): | |
lecun_normal_(module.weight) | |
nn.init.zeros_(module.bias) | |
else: | |
if jax_impl: | |
nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
if 'mlp' in name: | |
nn.init.normal_(module.bias, std=1e-6) | |
else: | |
nn.init.zeros_(module.bias) | |
else: | |
trunc_normal_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif jax_impl and isinstance(module, nn.Conv2d): | |
# NOTE conv was left to pytorch default in my original init | |
lecun_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm2d)): | |
nn.init.zeros_(module.bias) | |
nn.init.ones_(module.weight) | |
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=(), mode='bicubic'): | |
# Rescale the grid of position embeddings when loading from state_dict. Adapted from | |
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 | |
_logger.info('Resized position embedding: %s to %s with %s cls/dis tokens', posemb.shape, posemb_new.shape, | |
num_tokens) | |
ntok_new = posemb_new.shape[1] | |
if num_tokens: | |
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:] | |
ntok_new -= num_tokens | |
else: | |
posemb_tok, posemb_grid = posemb[:, :0], posemb[0] | |
gs_old = int(math.sqrt(len(posemb_grid))) | |
if not len(gs_new): # backwards compatibility | |
gs_new = [int(math.sqrt(ntok_new))] * 2 | |
assert len(gs_new) >= 2 | |
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) | |
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode=mode, align_corners=False) | |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) | |
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) | |
return posemb | |
def adapt_image_pos_embed_to_passt(posemb, num_tokens=1, posemb_len=1000, mode='bicubic'): | |
# Rescale the grid of position embeddings when loading from state_dict. Adapted from | |
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 | |
if num_tokens: | |
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:] | |
else: | |
posemb_tok, posemb_grid = posemb[:, :0], posemb[0] | |
gs_old = int(math.sqrt(len(posemb_grid))) | |
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
posemb_grid = F.interpolate(posemb_grid, size=(1, posemb_len), mode=mode, align_corners=False) | |
freq_new_pos_embed = posemb_grid.mean(dim=3, keepdim=True) | |
time_new_pos_embed = posemb_grid.mean(dim=2, keepdim=True) | |
_logger.info('New Position cls/dstl embedding %s', posemb_tok.shape) | |
_logger.info('New FREQ Position embedding %s', freq_new_pos_embed.shape) | |
_logger.info('New TIME Position embedding %s', time_new_pos_embed.shape) | |
return posemb_tok, freq_new_pos_embed, time_new_pos_embed | |
def checkpoint_filter_fn(state_dict, model): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
if 'model' in state_dict: | |
# For deit models | |
state_dict = state_dict['model'] | |
state_dict = {k: v for k, v in state_dict.items()} | |
if "time_new_pos_embed" not in state_dict: | |
# we are working with ImageNet model | |
_logger.info("Adapting pos embedding from ImageNet pretrained model to PaSST.") | |
v = state_dict.pop("pos_embed") | |
new_pos_embed, freq_new_pos_embed, time_new_pos_embed = adapt_image_pos_embed_to_passt( | |
v, getattr(model, 'num_tokens', 1), model.pos_embed_len) | |
state_dict["new_pos_embed"] = new_pos_embed | |
state_dict["freq_new_pos_embed"] = freq_new_pos_embed | |
state_dict["time_new_pos_embed"] = time_new_pos_embed | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k: | |
embed_dim, C, H, W = v.shape | |
v = adapt_input_conv(model.in_chans, v, input_conv_name=k) | |
k1, k2 = model.patch_embed.proj.kernel_size # 128, 2 | |
# clever reshape | |
assert H * W == k1 * k2, "Error in the kernel size of the patch embedding" | |
v = v.reshape(embed_dim, model.in_chans, k1, k2) # [embed_dim, 1, k1, k2] | |
out_dict[k] = v | |
return out_dict | |
def _create_vision_transformer(variant, pretrained=False, default_cfg=None, **kwargs): | |
default_cfg = default_cfg or default_cfgs[variant] | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
# NOTE this extra code to support handling of repr size for in21k pretrained models | |
default_num_classes = default_cfg['num_classes'] | |
num_classes = kwargs.get('num_classes', default_num_classes) | |
repr_size = kwargs.pop('representation_size', None) | |
if repr_size is not None and num_classes != default_num_classes: | |
# Remove representation layer if fine-tuning. This may not always be the desired action, | |
# but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface? | |
_logger.warning("Removing representation layer for fine-tuning.") | |
repr_size = None | |
model = build_model_with_cfg( | |
PaSST, variant, pretrained, | |
default_cfg=default_cfg, | |
representation_size=repr_size, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
pretrained_custom_load='npz' in default_cfg['url'], | |
**kwargs) | |
return model | |
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights | |
""" | |
model_kwargs = dict( | |
patch_size=14, embed_dim=1280, depth=32, num_heads=16, representation_size=1280, **kwargs) | |
model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_base_distilled_patch16_384(pretrained=False, **kwargs): | |
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer( | |
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_swa_p16_128_ap476(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 10 structured patchout mAP=476 SWA \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (10, 10): | |
warnings.warn( | |
f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_swa_p16_128_ap476', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_kd_p16_128_ap486(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet (with KD) Patch 16 stride 10 structured patchout mAP=486 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (10, 10): | |
warnings.warn( | |
f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_kd_p16_128_ap486', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_l_kd_p16_128_ap47(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print( | |
"\n\n Loading PaSST-L (light, reduced depth=7) pre-trained on AudioSet (with KD) Patch 16 stride 10 structured patchout mAP=4708 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, | |
depth=7, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (10, 10): | |
warnings.warn( | |
f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_l_kd_p16_128_ap47', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_swa_p16_128_ap4761(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 10 structured patchout mAP=4763 SWA \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (10, 10): | |
warnings.warn( | |
f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_swa_p16_128_ap4761', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_p16_128_ap472(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 10 structured patchout mAP=472 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (10, 10): | |
warnings.warn( | |
f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_p16_128_ap472', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_p16_s12_128_ap470(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 12 structured patchout mAP=472 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (12, 12): | |
warnings.warn( | |
f"This model was pre-trained with strides {(12, 12)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_p16_s12_128_ap470', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_f128_20sec_p16_s10_ap474_swa(pretrained=False, **kwargs): | |
print("\n\n Loading PASST TRAINED ON AUDISET with 20 Second time encodings, with STFT hop of 160 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer( | |
'passt-s-f128-20sec-p16-s10-ap474-swa', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_f128_30sec_p16_s10_ap473_swa(pretrained=False, **kwargs): | |
print("\n\n Loading PASST TRAINED ON AUDISET with 30 Second time encodings, with STFT hop of 160 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer( | |
'passt-s-f128-30sec-p16-s10-ap473-swa', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_swa_p16_s12_128_ap473(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 12 structured patchout mAP=472 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (12, 12): | |
warnings.warn( | |
f"This model was pre-trained with strides {(12, 12)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_swa_p16_s12_128_ap473', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_p16_s14_128_ap469(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 14 structured patchout mAP=472 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (14, 14): | |
warnings.warn( | |
f"This model was pre-trained with strides {(14, 14)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_p16_s14_128_ap469', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_swa_p16_s14_128_ap471(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 14 structured patchout mAP=472 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (14, 14): | |
warnings.warn( | |
f"This model was pre-trained with strides {(14, 14)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_swa_p16_s14_128_ap471', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_swa_p16_s16_128_ap473(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 16 structured patchout mAP=472 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (16, 16): | |
warnings.warn( | |
f"This model was pre-trained with strides {(16, 16)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_swa_p16_s16_128_ap473', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def passt_s_p16_s16_128_ap468(pretrained=False, **kwargs): | |
""" PaSST pre-trained on AudioSet | |
""" | |
print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 16 structured patchout mAP=472 \n\n") | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
if model_kwargs.get("stride") != (16, 16): | |
warnings.warn( | |
f"This model was pre-trained with strides {(16, 16)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.") | |
model = _create_vision_transformer( | |
'passt_s_p16_s16_128_ap468', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def fix_embedding_layer(model, embed="default"): | |
if embed == "default": | |
return model | |
if embed == "overlap": | |
model.patch_embed = PatchEmbedAdaptiveMean(replace=model.patch_embed) | |
if embed == "am_keepconv": | |
model.patch_embed = PatchEmbedAdaptiveMeanKeepConv(replace=model.patch_embed) | |
return model | |
def lighten_model(model, cut_depth=0): | |
if cut_depth == 0: | |
return model | |
if cut_depth: | |
if cut_depth < 0: | |
print(f"\n Reducing model depth by removing every {-cut_depth} layer \n\n") | |
else: | |
print(f"\n Reducing model depth by {cut_depth} \n\n") | |
if len(model.blocks) < cut_depth + 2: | |
raise ValueError(f"Cut depth a VIT with {len(model.blocks)} " | |
f"layers should be between 1 and {len(model.blocks) - 2}") | |
print(f"\n Before Cutting it was {len(model.blocks)} \n\n") | |
old_blocks = list(model.blocks.children()) | |
if cut_depth < 0: | |
print(f"cut_depth={cut_depth}") | |
old_blocks = [old_blocks[0]] + old_blocks[1:-1:-cut_depth] + [old_blocks[-1]] | |
else: | |
old_blocks = [old_blocks[0]] + old_blocks[cut_depth + 1:] | |
model.blocks = nn.Sequential(*old_blocks) | |
print(f"\n Atfer Cutting it is {len(model.blocks)} \n\n") | |
return model | |
def get_model(arch="passt_s_kd_p16_128_ap486", pretrained=True, n_classes=527, in_channels=1, | |
input_fdim=128, input_tdim=998, frame_patchout=300, pos_embed_length=1000 | |
): | |
""" | |
:param arch: Base ViT or Deit architecture | |
:param pretrained: use pretrained model on imagenet | |
:param n_classes: number of classes | |
:param in_channels: number of input channels: 1 for mono | |
:param input_fdim: the expected input frequency bins. | |
:param input_tdim: the expected input time bins. | |
:param frame_patchout: the number of frames to be removed from the input | |
@param wandb_id: tries to load model with corresponding wandb_id from 'pretrained_path' | |
:return: | |
""" | |
model_func = None | |
input_size = (input_fdim, input_tdim) | |
if arch == "passt_deit_bd_p16_384": # base deit | |
model_func = deit_base_distilled_patch16_384 | |
elif arch == "passt_s_kd_p16_128_ap486": # pretrained | |
model_func = passt_s_kd_p16_128_ap486 | |
elif arch == "passt_l_kd_p16_128_ap47": # pretrained passt-L | |
model_func = passt_l_kd_p16_128_ap47 | |
elif arch == "passt_s_swa_p16_128_ap476": # pretrained | |
model_func = passt_s_swa_p16_128_ap476 | |
elif arch == "passt_s_swa_p16_128_ap4761": | |
model_func = passt_s_swa_p16_128_ap4761 | |
elif arch == "passt_s_p16_128_ap472": | |
model_func = passt_s_p16_128_ap472 | |
elif arch == "passt_s_p16_s16_128_ap468": | |
model_func = passt_s_p16_s16_128_ap468 | |
elif arch == "passt_s_swa_p16_s16_128_ap473": | |
model_func = passt_s_swa_p16_s16_128_ap473 | |
elif arch == "passt_s_swa_p16_s14_128_ap471": | |
model_func = passt_s_swa_p16_s14_128_ap471 | |
elif arch == "passt_s_p16_s14_128_ap469": | |
model_func = passt_s_p16_s14_128_ap469 | |
elif arch == "passt_s_swa_p16_s12_128_ap473": | |
model_func = passt_s_swa_p16_s12_128_ap473 | |
elif arch == "passt_s_p16_s12_128_ap470": | |
model_func = passt_s_p16_s12_128_ap470 | |
elif arch == "passt_s_f128_20sec_p16_s10_ap474": | |
model_func = passt_s_f128_20sec_p16_s10_ap474_swa | |
elif arch == "passt_s_f128_30sec_p16_s10_ap473": | |
model_func = passt_s_f128_30sec_p16_s10_ap473_swa | |
if model_func is None: | |
raise RuntimeError(f"Unknown model {arch}") | |
model = model_func(pretrained=pretrained, num_classes=n_classes, in_chans=in_channels, | |
img_size=input_size, frame_patchout=frame_patchout, pos_embed_length=pos_embed_length) | |
model = fix_embedding_layer(model) | |
model = lighten_model(model) | |
return model | |
class EnsembelerModel(nn.Module): | |
def __init__(self, models): | |
super(EnsembelerModel, self).__init__() | |
self.models = nn.ModuleList(models) | |
def forward(self, x): | |
# ModuleList can act as an iterable, or be indexed using ints | |
all_out = None | |
for i, m in enumerate(self.models): | |
out, _ = m(x) | |
if all_out is None: | |
all_out = out | |
else: | |
all_out = out + all_out | |
all_out = all_out / len(self.models) | |
return all_out, all_out | |