soiz1's picture
Update app.py
5042316 verified
import os
import cv2
import shutil
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, render_template, send_from_directory
import warnings
warnings.filterwarnings("ignore")
app = Flask(__name__)
# 一時ファイル保存用ディレクトリ
UPLOAD_FOLDER = 'uploads'
RESULT_FOLDER = 'results'
EXAMPLES_FOLDER = 'examples'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
os.makedirs(EXAMPLES_FOLDER, exist_ok=True)
# モデル関連のインポートと初期化
def initialize_model():
# Clean up previous installations
if os.path.exists("DIS"):
shutil.rmtree("DIS")
if os.path.exists("saved_models"):
shutil.rmtree("saved_models")
# Clone repository and setup model
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# Import after setup
from data_loader_cache import normalize, im_reader, im_preprocess
from models import ISNetDIS
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Setup model directories
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
# Set Parameters
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
# Build Model
net = build_model(hypar, device)
return net, hypar, device
class GOSNormalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/examples/<filename>')
def serve_example(filename):
# サンプル画像がなければダウンロード
example_path = os.path.join(EXAMPLES_FOLDER, filename)
if not os.path.exists(example_path):
if filename == 'robot.png':
os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/robot.png -O {example_path}")
elif filename == 'ship.png':
os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/ship.png -O {example_path}")
return send_from_directory(EXAMPLES_FOLDER, filename)
@app.route('/api/process', methods=['POST'])
def process_image():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
# 毎回モデルを初期化
net, hypar, device = initialize_model()
# ファイルを保存
upload_path = os.path.join(UPLOAD_FOLDER, file.filename)
file.save(upload_path)
try:
# 画像処理
image_tensor, orig_size = load_image(upload_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
# 結果を保存
original_filename = os.path.splitext(file.filename)[0]
result_rgba_path = os.path.join(RESULT_FOLDER, f"{original_filename}_rgba.png")
result_mask_path = os.path.join(RESULT_FOLDER, f"{original_filename}_mask.png")
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(upload_path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
im_rgba.save(result_rgba_path)
pil_mask.save(result_mask_path)
# 結果のURLを返す
return jsonify({
"original": f"/{UPLOAD_FOLDER}/{file.filename}",
"rgba": f"/{RESULT_FOLDER}/{original_filename}_rgba.png",
"mask": f"/{RESULT_FOLDER}/{original_filename}_mask.png",
"filename": file.filename
})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route(f'/{UPLOAD_FOLDER}/<filename>')
def serve_upload(filename):
return send_from_directory(UPLOAD_FOLDER, filename)
@app.route(f'/{RESULT_FOLDER}/<filename>')
def serve_result(filename):
return send_from_directory(RESULT_FOLDER, filename)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=True)