someAdvice123's picture
Update app.py
417af67
import streamlit as st
import time
from selenium import webdriver
from selenium.webdriver.firefox.options import Options
from selenium.webdriver.firefox.service import Service
from webdriver_manager.firefox import GeckoDriverManager
from datetime import datetime
from bs4 import BeautifulSoup
import pandas as pd
import sqlite3
import matplotlib.pyplot as plt
import requests
import networkx as nx
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
def make_graph():
G = nx.DiGraph()
G = nx.Graph()
G.add_edges_from([('Nimfadora T','Tad T'),
('Andromeda B','Nimfadora T'),
('Andromeda B','Tad T'),
('Andromeda B','Kingus B'),
('Druela R','Kingus B'),
('Andromeda B','Druela R'),
('Narcisa B','Druela R'),
('Narcisa B', 'Kingus B'),
('Lucius M','Narcisa B'),
('Draco M', 'Lucius M'),
('Draco M', 'Narcisa B'),
('Draco M','Astoria G'),
('Scorpius M','Astoria G'),
('Scorpius M', 'Draco M'),
('Rimus L','Nimfadora T'),
('Ted L', 'Rimus L'),
('Ted L','Nimfadora T')])
# Отображение графа
fig, ax = plt.subplots()
pos = nx.spring_layout(G)
nx.draw_networkx(G, pos, with_labels=True, node_color='lightblue', node_size=500, edge_color='gray', width=2, alpha=0.7, ax=ax)
st.pyplot(fig)
def linear_regression():
df = pd.read_csv('imdb_top_1000.csv')
df['Runtime'] = df['Runtime'].astype(str)
df['IMDB_Rating'] = df['IMDB_Rating'].astype(str)
df['Runtime'] = df['Runtime'].str.replace(r'\D', '')
df['IMDB_Rating'] = df['IMDB_Rating'].str.replace(r'\D', '').astype(float)
X = df['Runtime'].values.reshape(-1, 1)
y = df['IMDB_Rating'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
return mse
print('Mean Squared Error:', mse)
def createDriver(url):
firefoxOptions = Options()
firefoxOptions.add_argument("--headless")
service = Service(GeckoDriverManager().install())
driver = webdriver.Firefox(
options=firefoxOptions,
service=service,
)
driver.get(url)
time.sleep(2)
main_page = driver.page_source
soup = BeautifulSoup(main_page, 'html.parser')
return soup
def scrape_weather_data(soup):
data = soup.find(class_="chronicle-table").find('tbody').find_all('tr')
data_value = data[244].find_all('nobr')
data_month = data[0].find_all('td')
temp = []
temp_month = []
for i in data_value:
temp.append(float(i.text))
for j in range(0, len(data_month)):
temp_month.append(data_month[j].text)
temp_month.pop()
temp.pop()
return temp_month, temp
def get_weather_data(station, start_date, end_date):
if station == "Barnaul":
station = "Asia/Barnaul"
elif station == "Moscow":
station = "Europe/Moscow"
else:
station = "Europe/Berlin"
url = "https://meteostat.p.rapidapi.com/stations/hourly"
querystring = {"station":"10637","start":start_date,"end":end_date,"tz":station}
headers = {
"X-RapidAPI-Key": "9c8eb62f1fmsh82eba345d265b05p1541b2jsna3309cd23406",
"X-RapidAPI-Host": "meteostat.p.rapidapi.com"
}
response = requests.get(url, headers=headers, params=querystring)
data = response.json()
data_mas = []
for j in data['data']:
data_date = j['time']
windy_date = str(j['dwpt'])+" km/h"
osadki = str(j['prcp']) + " mm"
temperature =str(j['temp']) + " °C"
data_mas.append([data_date, temperature, windy_date, osadki])
return data_mas
def process_data(data):
df = pd.DataFrame(data)
df = df.rename(columns={ 0 : 'date_time', 1: 'temperature', 2: 'wind_speed', 3: 'humidity'})
# Преобразование типов данных и очистка данных
df["temperature"] = df["temperature"].str.extract(r"(\d+)").astype(float)
df["humidity"] = df["humidity"].str.extract(r"(\d+)").astype(float)
df["wind_speed"] = df["wind_speed"].str.extract(r"(\d+)").astype(float)
df = df.drop_duplicates()
df = df.fillna(0)
return df
def analyze_data(df):
# Вычисление статистических метрик
mean_temperature = round(df["temperature"].mean(), 2)
median_temperature =round(df["temperature"].median(),2)
std_temperature = round(df["temperature"].std(),2)
results = {
"mean_temperature": mean_temperature,
"median_temperature": median_temperature,
"std_temperature": std_temperature
}
return results
def visualize_data_api(df):
fig, ax = plt.subplots()
ax.plot(df['date_time'], df['temperature'])
plt.xticks(rotation=90)
ax.set_xlabel('Date')
ax.set_ylabel('Temperature')
ax.set_title('Temperature Over Time')
fig.set_size_inches(20, 15)
st.pyplot(fig)
def visualize_data_parsing(mas_month, math_temp):
fig, ax = plt.subplots()
ax.plot(mas_month, math_temp)
plt.xticks(rotation=90)
ax.set_xlabel('Month')
ax.set_ylabel('Temperature')
ax.set_title('Temperature per year 2022 in Moscow')
fig.set_size_inches(10, 6)
st.pyplot(fig)
def save_to_database(dateNow,timeNow, station, start_date, end_date):
conn = sqlite3.connect('statistic.db')
sql = conn.cursor()
sql.execute("""INSERT INTO statistic VALUES (?, ?, ?, ?,?)""", (dateNow,timeNow, station, start_date, end_date))
conn.commit()
conn.close()
def view_dataBase():
conn = sqlite3.connect('statistic.db')
df = pd.read_sql_query("SELECT * from statistic", conn)
return df
# Демонстрация проекта с помощью Streamlit
def streamlit_demo():
st.title("A few useful things!")
st.title("Black family tree graph from harry potter:")
make_graph()
st.title('Rating depends on the length of the film:')
mse_error = linear_regression()
st.write(f'Mean Squared Error: {mse_error}')
st.title("Weather Analysis")
temperature_moscow2022_button = st.button("Show temperature in Moscow for 2022") #кнопка для парсинга температуры в москве за 2022 год
if temperature_moscow2022_button:
url = "http://www.pogodaiklimat.ru/history/27612.htm"
soup = createDriver(url)
scraped_month, scraped_temp = scrape_weather_data(soup)
visualize_data_parsing(scraped_month, scraped_temp)
# Добавить элементы управления для выбора города, временного диапазона и отображения результатов
city = st.selectbox("Select City", ["Moscow", "Berlin", "Barnaul"])
start_date = st.date_input("Select Start Date")
end_date = st.date_input("Select End Date")
temperature_period_button = st.button("Submit") #кнопка для получения данных о погоде через api
if temperature_period_button:
now = datetime.now()
timeNow = now.strftime("%H:%M:%S")
dateNow = now.date()
save_to_database(dateNow,timeNow, city, start_date, end_date)
# Получение данных о погоде для выбранного города и временного диапазона
weather_data = get_weather_data(city, start_date, end_date)
processed_data = process_data(weather_data)
# Анализ данных
analyzed_data = analyze_data(processed_data)
# Визуализация данных
visualize_data_api(processed_data)
st.title("Data analysis")
for key, value in analyzed_data.items():
st.write(key, value)
statistic_button = st.button("View visit statistics") #кнопка для просмотра статистика нажатий кнопки "Submit"
if statistic_button:
df = view_dataBase()
st.write(df)
def main():
streamlit_demo()
if __name__ == '__main__':
main()