update2
#35
by
AppleSwing
- opened
- src/display/utils.py +1 -1
- src/populate.py +1 -1
src/display/utils.py
CHANGED
@@ -119,7 +119,7 @@ for task in Tasks:
|
|
119 |
# auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)])
|
120 |
if task.value.benchmark in MULTIPLE_CHOICEs:
|
121 |
continue
|
122 |
-
auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
|
123 |
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
|
124 |
auto_eval_column_dict.append([f"{task.name}_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {MBU}", "number", True, hidden=True)])
|
125 |
auto_eval_column_dict.append([f"{task.name}_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {MFU}", "number", True, hidden=True)])
|
|
|
119 |
# auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)])
|
120 |
if task.value.benchmark in MULTIPLE_CHOICEs:
|
121 |
continue
|
122 |
+
# auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
|
123 |
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
|
124 |
auto_eval_column_dict.append([f"{task.name}_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {MBU}", "number", True, hidden=True)])
|
125 |
auto_eval_column_dict.append([f"{task.name}_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {MFU}", "number", True, hidden=True)])
|
src/populate.py
CHANGED
@@ -75,7 +75,7 @@ def get_leaderboard_df(
|
|
75 |
df[col] = np.nan
|
76 |
|
77 |
if not df.empty:
|
78 |
-
df = df.
|
79 |
|
80 |
# filter out if any of the benchmarks have not been produced
|
81 |
# df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
75 |
df[col] = np.nan
|
76 |
|
77 |
if not df.empty:
|
78 |
+
df = df.round(decimals=2)
|
79 |
|
80 |
# filter out if any of the benchmarks have not been produced
|
81 |
# df = df[has_no_nan_values(df, benchmark_cols)]
|