Files changed (2) hide show
  1. src/display/utils.py +1 -1
  2. src/populate.py +1 -1
src/display/utils.py CHANGED
@@ -119,7 +119,7 @@ for task in Tasks:
119
  # auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)])
120
  if task.value.benchmark in MULTIPLE_CHOICEs:
121
  continue
122
- auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
123
  auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
124
  auto_eval_column_dict.append([f"{task.name}_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {MBU}", "number", True, hidden=True)])
125
  auto_eval_column_dict.append([f"{task.name}_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {MFU}", "number", True, hidden=True)])
 
119
  # auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)])
120
  if task.value.benchmark in MULTIPLE_CHOICEs:
121
  continue
122
+ # auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
123
  auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
124
  auto_eval_column_dict.append([f"{task.name}_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {MBU}", "number", True, hidden=True)])
125
  auto_eval_column_dict.append([f"{task.name}_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {MFU}", "number", True, hidden=True)])
src/populate.py CHANGED
@@ -75,7 +75,7 @@ def get_leaderboard_df(
75
  df[col] = np.nan
76
 
77
  if not df.empty:
78
- df = df.map(lambda x: round(x, 2) if isinstance(x, (int, float)) else x)
79
 
80
  # filter out if any of the benchmarks have not been produced
81
  # df = df[has_no_nan_values(df, benchmark_cols)]
 
75
  df[col] = np.nan
76
 
77
  if not df.empty:
78
+ df = df.round(decimals=2)
79
 
80
  # filter out if any of the benchmarks have not been produced
81
  # df = df[has_no_nan_values(df, benchmark_cols)]