HunyuanImage-2.1 / hyimage /diffusion /pipelines /hunyuanimage_pipeline.py
KevinNg99's picture
default shift
23c68ff
import re
import os
from dataclasses import dataclass
from typing import Optional
from einops import rearrange
from tqdm import tqdm
import loguru
import torch
from hyimage.common.config.lazy import DictConfig
from PIL import Image
from hyimage.common.config import instantiate
from hyimage.common.constants import PRECISION_TO_TYPE
from hyimage.common.format_prompt import MultilingualPromptFormat
from hyimage.models.text_encoder import PROMPT_TEMPLATE
from hyimage.models.model_zoo import HUNYUANIMAGE_REPROMPT
from hyimage.models.text_encoder.byT5 import load_glyph_byT5_v2
from hyimage.models.hunyuan.modules.hunyuanimage_dit import load_hunyuan_dit_state_dict
from hyimage.diffusion.cfg_utils import AdaptiveProjectedGuidance, rescale_noise_cfg
@dataclass
class HunyuanImagePipelineConfig:
"""
Configuration class for HunyuanImage diffusion pipeline.
This dataclass consolidates all configuration parameters for the pipeline,
including model configurations (DiT, VAE, text encoder) and pipeline
parameters (sampling steps, guidance scale, etc.).
"""
# Model configurations
dit_config: DictConfig
vae_config: DictConfig
text_encoder_config: DictConfig
reprompt_config: DictConfig
refiner_model_name: str = "hunyuanimage-refiner"
enable_dit_offloading: bool = True
enable_reprompt_model_offloading: bool = True
enable_refiner_offloading: bool = True
cfg_mode: str = "MIX_mode_0"
guidance_rescale: float = 0.0
# Pipeline parameters
default_sampling_steps: int = 50
# Default guidance scale, will be overridden by the guidance_scale parameter in __call__
default_guidance_scale: float = 3.5
# Inference shift
shift: int = 5
torch_dtype: str = "bf16"
device: str = "cuda"
version: str = ""
@classmethod
def create_default(cls, version: str = "v2.1", use_distilled: bool = False, **kwargs):
"""
Create a default configuration for specified HunyuanImage version.
Args:
version: HunyuanImage version, only "v2.1" is supported
use_distilled: Whether to use distilled model
**kwargs: Additional configuration options
"""
if version == "v2.1":
from hyimage.models.model_zoo import (
HUNYUANIMAGE_V2_1_DIT,
HUNYUANIMAGE_V2_1_DIT_CFG_DISTILL,
HUNYUANIMAGE_V2_1_VAE_32x,
HUNYUANIMAGE_V2_1_TEXT_ENCODER,
)
dit_config = HUNYUANIMAGE_V2_1_DIT_CFG_DISTILL() if use_distilled else HUNYUANIMAGE_V2_1_DIT()
return cls(
dit_config=dit_config,
vae_config=HUNYUANIMAGE_V2_1_VAE_32x(),
text_encoder_config=HUNYUANIMAGE_V2_1_TEXT_ENCODER(),
reprompt_config=HUNYUANIMAGE_REPROMPT(),
shift=4 if use_distilled else 5,
default_guidance_scale=3.25 if use_distilled else 3.5,
default_sampling_steps=8 if use_distilled else 50,
version=version,
**kwargs
)
else:
raise ValueError(f"Unsupported HunyuanImage version: {version}. Only 'v2.1' is supported")
class HunyuanImagePipeline:
"""
User-friendly pipeline for HunyuanImage text-to-image generation.
This pipeline provides a simple interface similar to diffusers library
for generating high-quality images from text prompts.
Supports HunyuanImage 2.1 version with automatic configuration.
Both default and distilled (CFG distillation) models are supported.
"""
def __init__(
self,
config: HunyuanImagePipelineConfig,
**kwargs
):
"""
Initialize the HunyuanImage diffusion pipeline.
Args:
config: Configuration object containing all model and pipeline settings
**kwargs: Additional configuration options
"""
self.config = config
self.default_sampling_steps = config.default_sampling_steps
self.default_guidance_scale = config.default_guidance_scale
self.shift = config.shift
self.torch_dtype = PRECISION_TO_TYPE[config.torch_dtype]
self.device = config.device
self.execution_device = config.device
self.dit = None
self.text_encoder = None
self.vae = None
self.byt5_kwargs = None
self.prompt_format = None
self.enable_dit_offloading = config.enable_dit_offloading
self.enable_reprompt_model_offloading = config.enable_reprompt_model_offloading
self.enable_refiner_offloading = config.enable_refiner_offloading
self.cfg_mode = config.cfg_mode
self.guidance_rescale = config.guidance_rescale
if self.cfg_mode == "APG_mode_0":
self.cfg_guider = AdaptiveProjectedGuidance(guidance_scale=10.0, eta=0.0,
adaptive_projected_guidance_rescale=10.0,
adaptive_projected_guidance_momentum=-0.5)
self.apg_start_step = 10
elif self.cfg_mode == "MIX_mode_0":
self.cfg_guider_ocr = AdaptiveProjectedGuidance(guidance_scale=10.0, eta=0.0,
adaptive_projected_guidance_rescale=10.0,
adaptive_projected_guidance_momentum=-0.5)
self.apg_start_step_ocr = 75
self.cfg_guider_general = AdaptiveProjectedGuidance(guidance_scale=10.0, eta=0.0,
adaptive_projected_guidance_rescale=10.0,
adaptive_projected_guidance_momentum=-0.5)
self.apg_start_step_general = 10
self.ocr_mask = []
self._load_models()
def _load_dit(self):
try:
dit_config = self.config.dit_config
self.dit = instantiate(dit_config.model)
if dit_config.load_from:
load_hunyuan_dit_state_dict(self.dit, dit_config.load_from, strict=True)
else:
raise ValueError("Must provide checkpoint path for DiT model")
self.dit = self.dit.to(self.device, dtype=self.torch_dtype)
self.dit.eval()
if getattr(dit_config, "use_compile", False):
self.dit = torch.compile(self.dit)
loguru.logger.info("✓ DiT model loaded")
except Exception as e:
raise RuntimeError(f"Error loading DiT model: {e}") from e
def _load_text_encoder(self):
try:
text_encoder_config = self.config.text_encoder_config
if not text_encoder_config.load_from:
raise ValueError("Must provide checkpoint path for text encoder")
if text_encoder_config.prompt_template is not None:
prompt_template = PROMPT_TEMPLATE[text_encoder_config.prompt_template]
crop_start = prompt_template.get("crop_start", 0)
else:
crop_start = 0
prompt_template = None
max_length = text_encoder_config.text_len + crop_start
self.text_encoder = instantiate(
text_encoder_config.model,
max_length=max_length,
text_encoder_path=os.path.join(text_encoder_config.load_from, "llm"),
prompt_template=prompt_template,
logger=None,
device=self.device,
)
loguru.logger.info("✓ HunyuanImage text encoder loaded")
except Exception as e:
raise RuntimeError(f"Error loading text encoder: {e}") from e
def _load_vae(self):
try:
vae_config = self.config.vae_config
self.vae = instantiate(
vae_config.model,
vae_path=vae_config.load_from,
)
self.vae = self.vae.to(self.device)
loguru.logger.info("✓ VAE loaded")
except Exception as e:
raise RuntimeError(f"Error loading VAE: {e}") from e
def _load_reprompt_model(self):
try:
reprompt_config = self.config.reprompt_config
self._reprompt_model = instantiate(reprompt_config.model, models_root_path=reprompt_config.load_from, enable_offloading=self.enable_reprompt_model_offloading)
loguru.logger.info("✓ Reprompt model loaded")
except Exception as e:
raise RuntimeError(f"Error loading reprompt model: {e}") from e
@property
def refiner_pipeline(self):
"""
As the refiner model is an optional component, we load it on demand.
"""
if hasattr(self, '_refiner_pipeline') and self._refiner_pipeline is not None:
return self._refiner_pipeline
from hyimage.diffusion.pipelines.hunyuanimage_refiner_pipeline import HunYuanImageRefinerPipeline
self._refiner_pipeline = HunYuanImageRefinerPipeline.from_pretrained(self.config.refiner_model_name)
return self._refiner_pipeline
@property
def reprompt_model(self):
"""
As the reprompt model is an optional component, we load it on demand.
"""
if hasattr(self, '_reprompt_model') and self._reprompt_model is not None:
return self._reprompt_model
self._load_reprompt_model()
return self._reprompt_model
def _load_byt5(self):
assert self.dit is not None, "DiT model must be loaded before byT5"
if not self.use_byt5:
self.byt5_kwargs = None
self.prompt_format = None
return
try:
text_encoder_config = self.config.text_encoder_config
glyph_root = os.path.join(self.config.text_encoder_config.load_from, "Glyph-SDXL-v2")
if not os.path.exists(glyph_root):
raise RuntimeError(
f"Glyph checkpoint not found from '{glyph_root}'. \n"
"Please download from https://modelscope.cn/models/AI-ModelScope/Glyph-SDXL-v2/files.\n\n"
"- Required files:\n"
" Glyph-SDXL-v2\n"
" ├── assets\n"
" │   ├── color_idx.json\n"
" │   └── multilingual_10-lang_idx.json\n"
" └── checkpoints\n"
" └── byt5_model.pt\n"
)
byT5_google_path = os.path.join(text_encoder_config.load_from, "byt5-small")
if not os.path.exists(byT5_google_path):
loguru.logger.warning(f"ByT5 google path not found from: {byT5_google_path}. Try downloading from https://huggingface.co/google/byt5-small.")
byT5_google_path = "google/byt5-small"
multilingual_prompt_format_color_path = os.path.join(glyph_root, "assets/color_idx.json")
multilingual_prompt_format_font_path = os.path.join(glyph_root, "assets/multilingual_10-lang_idx.json")
byt5_args = dict(
byT5_google_path=byT5_google_path,
byT5_ckpt_path=os.path.join(glyph_root, "checkpoints/byt5_model.pt"),
multilingual_prompt_format_color_path=multilingual_prompt_format_color_path,
multilingual_prompt_format_font_path=multilingual_prompt_format_font_path,
byt5_max_length=128
)
self.byt5_kwargs = load_glyph_byT5_v2(byt5_args, device=self.device)
self.prompt_format = MultilingualPromptFormat(
font_path=multilingual_prompt_format_font_path,
color_path=multilingual_prompt_format_color_path
)
loguru.logger.info("✓ byT5 glyph processor loaded")
except Exception as e:
raise RuntimeError("Error loading byT5 glyph processor") from e
def _load_models(self):
"""
Load all model components.
"""
loguru.logger.info("Loading HunyuanImage models...")
self._load_vae()
self._load_dit()
self._load_byt5()
self._load_text_encoder()
def _encode_text(self, prompt: str, data_type: str = "image"):
"""
Encode text prompt to embeddings.
Args:
prompt: The text prompt
data_type: The type of data ("image" by default)
Returns:
Tuple of (text_emb, text_mask)
"""
text_inputs = self.text_encoder.text2tokens(prompt)
with torch.no_grad():
text_outputs = self.text_encoder.encode(
text_inputs,
data_type=data_type,
)
text_emb = text_outputs.hidden_state
text_mask = text_outputs.attention_mask
return text_emb, text_mask
def _encode_glyph(self, prompt: str):
"""
Encode glyph information using byT5.
Args:
prompt: The text prompt
Returns:
Tuple of (byt5_emb, byt5_mask)
"""
if not self.use_byt5:
return None, None
if not prompt:
return (
torch.zeros((1, self.byt5_kwargs["byt5_max_length"], 1472), device=self.device),
torch.zeros((1, self.byt5_kwargs["byt5_max_length"]), device=self.device, dtype=torch.int64)
)
try:
text_prompt_texts = []
pattern_quote_double = r'\"(.*?)\"'
pattern_quote_chinese_single = r'‘(.*?)’'
pattern_quote_chinese_double = r'“(.*?)”'
matches_quote_double = re.findall(pattern_quote_double, prompt)
matches_quote_chinese_single = re.findall(pattern_quote_chinese_single, prompt)
matches_quote_chinese_double = re.findall(pattern_quote_chinese_double, prompt)
text_prompt_texts.extend(matches_quote_double)
text_prompt_texts.extend(matches_quote_chinese_single)
text_prompt_texts.extend(matches_quote_chinese_double)
if not text_prompt_texts:
self.ocr_mask = [False]
return (
torch.zeros((1, self.byt5_kwargs["byt5_max_length"], 1472), device=self.device),
torch.zeros((1, self.byt5_kwargs["byt5_max_length"]), device=self.device, dtype=torch.int64)
)
self.ocr_mask = [True]
text_prompt_style_list = [{'color': None, 'font-family': None} for _ in range(len(text_prompt_texts))]
glyph_text_formatted = self.prompt_format.format_prompt(text_prompt_texts, text_prompt_style_list)
byt5_text_ids, byt5_text_mask = self._get_byt5_text_tokens(
self.byt5_kwargs["byt5_tokenizer"],
self.byt5_kwargs["byt5_max_length"],
glyph_text_formatted
)
byt5_text_ids = byt5_text_ids.to(device=self.device)
byt5_text_mask = byt5_text_mask.to(device=self.device)
byt5_prompt_embeds = self.byt5_kwargs["byt5_model"](
byt5_text_ids, attention_mask=byt5_text_mask.float()
)
byt5_emb = byt5_prompt_embeds[0]
return byt5_emb, byt5_text_mask
except Exception as e:
loguru.logger.warning(f"Warning: Error in glyph encoding, using fallback: {e}")
return (
torch.zeros((1, self.byt5_kwargs["byt5_max_length"], 1472), device=self.device),
torch.zeros((1, self.byt5_kwargs["byt5_max_length"]), device=self.device, dtype=torch.int64)
)
def _get_byt5_text_tokens(self, tokenizer, max_length, text_list):
"""
Get byT5 text tokens.
Args:
tokenizer: The tokenizer object
max_length: Maximum token length
text_list: List or string of text
Returns:
Tuple of (byt5_text_ids, byt5_text_mask)
"""
if isinstance(text_list, list):
text_prompt = " ".join(text_list)
else:
text_prompt = text_list
byt5_text_inputs = tokenizer(
text_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
byt5_text_ids = byt5_text_inputs.input_ids
byt5_text_mask = byt5_text_inputs.attention_mask
return byt5_text_ids, byt5_text_mask
def _prepare_latents(self, width: int, height: int, generator: torch.Generator, batch_size: int = 1, vae_downsampling_factor: int = 32):
"""
Prepare initial noise latents.
Args:
width: Image width
height: Image height
generator: Torch random generator
batch_size: Batch size
Returns:
Latent tensor
"""
assert width % vae_downsampling_factor == 0 and height % vae_downsampling_factor == 0, (
f"width and height must be divisible by {vae_downsampling_factor}, but got {width} and {height}"
)
latent_width = width // vae_downsampling_factor
latent_height = height // vae_downsampling_factor
latent_channels = 64
if len(self.dit.patch_size) == 3:
latent_shape = (batch_size, latent_channels, 1, latent_height, latent_width)
elif len(self.dit.patch_size) == 2:
latent_shape = (batch_size, latent_channels, latent_height, latent_width)
else:
raise ValueError(f"Unsupported patch_size: {self.dit.patch_size}")
# Generate random noise with shape latent_shape
latents = torch.randn(
latent_shape,
device=generator.device,
dtype=self.torch_dtype,
generator=generator,
).to(device=self.device)
return latents
def _denoise_step(self, latents, timesteps, text_emb, text_mask, byt5_emb, byt5_mask, guidance_scale: float = 1.0, timesteps_r=None):
"""
Perform one denoising step.
Args:
latents: Latent tensor
timesteps: Timesteps tensor
text_emb: Text embedding
text_mask: Text mask
byt5_emb: byT5 embedding
byt5_mask: byT5 mask
guidance_scale: Guidance scale
timesteps_r: Optional next timestep
Returns:
Noise prediction tensor
"""
if byt5_emb is not None and byt5_mask is not None:
extra_kwargs = {
"byt5_text_states": byt5_emb,
"byt5_text_mask": byt5_mask,
}
else:
if self.use_byt5:
raise ValueError("Must provide byt5_emb and byt5_mask for HunyuanImage 2.1")
extra_kwargs = {}
with torch.no_grad(), torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
if hasattr(self.dit, 'guidance_embed') and self.dit.guidance_embed:
guidance_expand = torch.tensor(
[guidance_scale] * latents.shape[0],
dtype=torch.float32,
device=latents.device
).to(latents.dtype) * 1000
else:
guidance_expand = None
noise_pred = self.dit(
latents,
timesteps,
text_states=text_emb,
encoder_attention_mask=text_mask,
guidance=guidance_expand,
return_dict=False,
extra_kwargs=extra_kwargs,
timesteps_r=timesteps_r,
)[0]
return noise_pred
def _apply_classifier_free_guidance(self, noise_pred, guidance_scale: float, i: int):
"""
Apply classifier-free guidance.
Args:
noise_pred: Noise prediction tensor
guidance_scale: Guidance scale
Returns:
Guided noise prediction tensor
"""
if guidance_scale == 1.0:
return noise_pred
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if self.cfg_mode.startswith("APG_mode_"):
if i <= self.apg_start_step:
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
_ = self.cfg_guider(noise_pred_text, noise_pred_uncond, step=i)
else:
noise_pred = self.cfg_guider(noise_pred_text, noise_pred_uncond, step=i)
elif self.cfg_mode.startswith("MIX_mode_"):
ocr_mask_bool = torch.tensor(self.ocr_mask, dtype=torch.bool)
true_idx = torch.where(ocr_mask_bool)[0]
false_idx = torch.where(~ocr_mask_bool)[0]
noise_pred_text_true = noise_pred_text[true_idx] if len(true_idx) > 0 else \
torch.empty((0, noise_pred_text.size(1)), dtype=noise_pred_text.dtype, device=noise_pred_text.device)
noise_pred_text_false = noise_pred_text[false_idx] if len(false_idx) > 0 else \
torch.empty((0, noise_pred_text.size(1)), dtype=noise_pred_text.dtype, device=noise_pred_text.device)
noise_pred_uncond_true = noise_pred_uncond[true_idx] if len(true_idx) > 0 else \
torch.empty((0, noise_pred_uncond.size(1)), dtype=noise_pred_uncond.dtype, device=noise_pred_uncond.device)
noise_pred_uncond_false = noise_pred_uncond[false_idx] if len(false_idx) > 0 else \
torch.empty((0, noise_pred_uncond.size(1)), dtype=noise_pred_uncond.dtype, device=noise_pred_uncond.device)
if len(noise_pred_text_true) > 0:
if i <= self.apg_start_step_ocr:
noise_pred_true = noise_pred_uncond_true + guidance_scale * (
noise_pred_text_true - noise_pred_uncond_true
)
_ = self.cfg_guider_ocr(noise_pred_text_true, noise_pred_uncond_true, step=i)
else:
noise_pred_true = self.cfg_guider_ocr(noise_pred_text_true, noise_pred_uncond_true, step=i)
else:
noise_pred_true = noise_pred_text_true
if len(noise_pred_text_false) > 0:
if i <= self.apg_start_step_general:
noise_pred_false = noise_pred_uncond_false + guidance_scale * (
noise_pred_text_false - noise_pred_uncond_false
)
_ = self.cfg_guider_general(noise_pred_text_false, noise_pred_uncond_false, step=i)
else:
noise_pred_false = self.cfg_guider_general(noise_pred_text_false, noise_pred_uncond_false, step=i)
else:
noise_pred_false = noise_pred_text_false
noise_pred = torch.empty_like(noise_pred_text)
if len(true_idx) > 0:
noise_pred[true_idx] = noise_pred_true
if len(false_idx) > 0:
noise_pred[false_idx] = noise_pred_false
else:
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred,
noise_pred_text,
guidance_rescale=self.guidance_rescale,
)
return noise_pred
def _decode_latents(self, latents, reorg_tokens=False):
"""
Decode latents to images using VAE.
Args:
latents: Latent tensor
Returns:
Image tensor
"""
if hasattr(self.vae.config, "shift_factor") and self.vae.config.shift_factor:
latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
else:
latents = latents / self.vae.config.scaling_factor
if reorg_tokens:
latents = rearrange(latents, "b c f h w -> b f c h w")
latents = rearrange(latents, "b f (n c) h w -> b (f n) c h w", n=2)
latents = rearrange(latents, "b f c h w -> b c f h w")
latents = latents[:, :, 1:]
if latents.ndim == 5:
latents = latents.squeeze(2)
if latents.ndim == 4:
latents = latents.unsqueeze(2)
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=True):
image = self.vae.decode(latents, return_dict=False)[0]
# Post-process image - remove frame dimension and normalize
image = (image / 2 + 0.5).clamp(0, 1)
image = image[:, :, 0] # Remove frame dimension for images
image = image.cpu().float()
return image
def get_timesteps_sigmas(self, sampling_steps: int, shift):
sigmas = torch.linspace(1, 0, sampling_steps + 1)
sigmas = (shift * sigmas) / (1 + (shift - 1) * sigmas)
sigmas = sigmas.to(torch.float32)
timesteps = (sigmas[:-1] * 1000).to(dtype=torch.float32, device=self.device)
return timesteps, sigmas
def step(self, latents, noise_pred, sigmas, step_i):
return latents.float() - (sigmas[step_i] - sigmas[step_i + 1]) * noise_pred.float()
@torch.no_grad()
def __call__(
self,
prompt: str,
shift: int = 4,
negative_prompt: str = "",
width: int = 2048,
height: int = 2048,
use_reprompt: bool = False,
use_refiner: bool = False,
num_inference_steps: Optional[int] = None,
guidance_scale: Optional[float] = None,
seed: Optional[int] = 42,
**kwargs
) -> Image.Image:
"""
Generate an image from a text prompt.
Args:
prompt: Text prompt describing the image
negative_prompt: Negative prompt for guidance
width: Image width
height: Image height
use_reprompt: Whether to use reprompt model
use_refiner: Whether to use refiner pipeline
num_inference_steps: Number of denoising steps (overrides config if provided)
guidance_scale: Strength of classifier-free guidance (overrides config if provided)
seed: Random seed for reproducibility
**kwargs: Additional arguments
Returns:
Generated PIL Image
"""
if seed is not None:
generator = torch.Generator(device='cpu').manual_seed(seed)
torch.manual_seed(seed)
else:
generator = None
sampling_steps = num_inference_steps if num_inference_steps is not None else self.default_sampling_steps
guidance_scale = guidance_scale if guidance_scale is not None else self.default_guidance_scale
shift = shift if shift is not None else self.shift
user_prompt = prompt
if use_reprompt:
if self.enable_dit_offloading:
self.to('cpu')
prompt = self.reprompt_model.predict(prompt)
if self.enable_dit_offloading:
self.to(self.execution_device)
print("=" * 60)
print("🖼️ HunyuanImage Generation Task")
print("-" * 60)
print(f"Prompt: {user_prompt}")
if use_reprompt:
print(f"Reprompt: {prompt}")
if not self.cfg_distilled:
print(f"Negative Prompt: {negative_prompt if negative_prompt else '(none)'}")
print(f"Guidance Scale: {guidance_scale}")
print(f"CFG Mode: {self.cfg_mode}")
print(f"Guidance Rescale: {self.guidance_rescale}")
print(f"Shift: {shift}")
print(f"Seed: {seed}")
print(f"Use MeanFlow: {self.use_meanflow}")
print(f"Use byT5: {self.use_byt5}")
print(f"Image Size: {width} x {height}")
print(f"Sampling Steps: {sampling_steps}")
print("=" * 60)
pos_text_emb, pos_text_mask = self._encode_text(prompt)
neg_text_emb, neg_text_mask = self._encode_text(negative_prompt)
pos_byt5_emb, pos_byt5_mask = self._encode_glyph(prompt)
neg_byt5_emb, neg_byt5_mask = self._encode_glyph(negative_prompt)
latents = self._prepare_latents(width, height, generator=generator)
do_classifier_free_guidance = (not self.cfg_distilled) and guidance_scale > 1
if do_classifier_free_guidance:
text_emb = torch.cat([neg_text_emb, pos_text_emb])
text_mask = torch.cat([neg_text_mask, pos_text_mask])
if self.use_byt5 and pos_byt5_emb is not None and neg_byt5_emb is not None:
byt5_emb = torch.cat([neg_byt5_emb, pos_byt5_emb])
byt5_mask = torch.cat([neg_byt5_mask, pos_byt5_mask])
else:
byt5_emb = pos_byt5_emb
byt5_mask = pos_byt5_mask
else:
text_emb = pos_text_emb
text_mask = pos_text_mask
byt5_emb = pos_byt5_emb
byt5_mask = pos_byt5_mask
timesteps, sigmas = self.get_timesteps_sigmas(sampling_steps, shift)
for i, t in enumerate(tqdm(timesteps, desc="Denoising", total=len(timesteps))):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
t_expand = t.repeat(latent_model_input.shape[0])
if self.use_meanflow:
if i == len(timesteps) - 1:
timesteps_r = torch.tensor([0.0], device=self.device)
else:
timesteps_r = timesteps[i + 1]
timesteps_r = timesteps_r.repeat(latent_model_input.shape[0])
else:
timesteps_r = None
if self.cfg_distilled:
noise_pred = self._denoise_step(
latent_model_input, t_expand, text_emb, text_mask, byt5_emb, byt5_mask, guidance_scale, timesteps_r=timesteps_r,
)
else:
noise_pred = self._denoise_step(
latent_model_input, t_expand, text_emb, text_mask, byt5_emb, byt5_mask, timesteps_r=timesteps_r,
)
if do_classifier_free_guidance:
noise_pred = self._apply_classifier_free_guidance(noise_pred, guidance_scale, i)
latents = self.step(latents, noise_pred, sigmas, i)
image = self._decode_latents(latents)
image = (image.squeeze(0).permute(1, 2, 0) * 255).byte().numpy()
pil_image = Image.fromarray(image)
if use_refiner:
if self.enable_dit_offloading:
self.to('cpu')
if self.enable_refiner_offloading:
self.refiner_pipeline.to(self.execution_device)
pil_image = self.refiner_pipeline(
image=pil_image,
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
use_reprompt=False,
use_refiner=False,
num_inference_steps=4,
guidance_scale=guidance_scale,
generator=generator,
)
if self.enable_refiner_offloading:
self.refiner_pipeline.to('cpu')
if self.enable_dit_offloading:
self.to(self.execution_device)
return pil_image
@property
def use_meanflow(self):
return getattr(self.dit, 'use_meanflow', False)
@property
def use_byt5(self):
return getattr(self.dit, 'glyph_byT5_v2', False)
@property
def cfg_distilled(self):
return getattr(self.dit, 'guidance_embed', False)
def to(self, device: str | torch.device):
"""
Move pipeline to specified device.
Args:
device: Target device string
Returns:
Self
"""
self.device = device
if self.dit is not None:
self.dit = self.dit.to(device, non_blocking=True)
# if self.text_encoder is not None:
# self.text_encoder = self.text_encoder.to(device, non_blocking=True)
if self.vae is not None:
self.vae = self.vae.to(device, non_blocking=True)
return self
def update_config(self, **kwargs):
"""
Update configuration parameters.
Args:
**kwargs: Key-value pairs to update
Returns:
Self
"""
for key, value in kwargs.items():
if hasattr(self.config, key):
setattr(self.config, key, value)
if hasattr(self, key):
setattr(self, key, value)
return self
@classmethod
def from_pretrained(cls, model_name: str = "hunyuanimage-v2.1", use_distilled: bool = False, **kwargs):
"""
Create pipeline from pretrained model.
Args:
model_name: Model name, supports "hunyuanimage-v2.1", "hunyuanimage-v2.1-distilled"
use_distilled: Whether to use distilled model (overrides model_name if specified)
**kwargs: Additional configuration options
Returns:
HunyuanImagePipeline instance
"""
if model_name == "hunyuanimage-v2.1":
version = "v2.1"
use_distilled = False
elif model_name == "hunyuanimage-v2.1-distilled":
version = "v2.1"
use_distilled = True
else:
raise ValueError(
f"Unsupported model name: {model_name}. Supported names: 'hunyuanimage-v2.1', 'hunyuanimage-v2.1-distilled'"
)
config = HunyuanImagePipelineConfig.create_default(
version=version, use_distilled=use_distilled, **kwargs
)
return cls(config=config)
@classmethod
def from_config(cls, config: HunyuanImagePipelineConfig):
"""
Create pipeline from configuration object.
Args:
config: HunyuanImagePipelineConfig instance
Returns:
HunyuanImagePipeline instance
"""
return cls(config=config)
def DiffusionPipeline(model_name: str = "hunyuanimage-v2.1", use_distilled: bool = False, **kwargs):
"""
Factory function to create HunyuanImagePipeline.
Args:
model_name: Model name, supports "hunyuanimage-v2.1", "hunyuanimage-v2.1-distilled"
use_distilled: Whether to use distilled model (overrides model_name if specified)
**kwargs: Additional configuration options
Returns:
HunyuanImagePipeline instance
"""
return HunyuanImagePipeline.from_pretrained(model_name, use_distilled=use_distilled, **kwargs)