fashion-try-on / SegBody.py
tonyassi's picture
Update SegBody.py
aa4e756 verified
import spaces
from transformers import pipeline
import numpy as np
import cv2
import insightface
from insightface.app import FaceAnalysis
from PIL import Image, ImageDraw
# Initialize face detection
#app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app = FaceAnalysis(providers=['CUDAExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
# Initialize segmentation pipeline
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes", device="cuda")
@spaces.GPU(enable_queue=True)
def remove_face(img, mask):
# Convert image to numpy array
img_arr = np.asarray(img)
# Run face detection
faces = app.get(img_arr)
# Get the first face
faces = faces[0]['bbox']
# Width and height of face
w = faces[2] - faces[0]
h = faces[3] - faces[1]
# Make face locations bigger
faces[0] = faces[0] - (w*0.5) # x left
faces[2] = faces[2] + (w*0.5) # x right
faces[1] = faces[1] - (h*0.5) # y top
faces[3] = faces[3] + (h*0.2) # y bottom
# Convert to [(x_left, y_top), (x_right, y_bottom)]
face_locations = [(faces[0], faces[1]), (faces[2], faces[3])]
# Draw black rect onto mask
img1 = ImageDraw.Draw(mask)
img1.rectangle(face_locations, fill=0)
return mask
@spaces.GPU(enable_queue=True)
def segment_body(original_img, face=True):
# Make a copy
img = original_img.copy()
# Segment image
segments = segmenter(img)
# Create list of masks
segment_include = ["Hat", "Hair", "Sunglasses", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Face", "Left-leg", "Right-leg", "Left-arm", "Right-arm", "Bag","Scarf"]
mask_list = []
for s in segments:
if(s['label'] in segment_include):
mask_list.append(s['mask'])
# Paste all masks on top of eachother
final_mask = np.array(mask_list[0])
for mask in mask_list:
current_mask = np.array(mask)
final_mask = final_mask + current_mask
# Convert final mask from np array to PIL image
final_mask = Image.fromarray(final_mask)
# Remove face
if(face==False):
final_mask = remove_face(img.convert('RGB'), final_mask)
# Apply mask to original image
img.putalpha(final_mask)
return img, final_mask