Spaces:
Running
Running
File size: 34,626 Bytes
1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 fd12cd0 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 1390db3 09a3a37 fd12cd0 1390db3 fd12cd0 1390db3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
import * as THREE from 'three';
import { CFG } from './config.js';
import { G } from './globals.js';
// --- Shared materials, geometries, and wind uniforms for trees ---
// We keep these module-scoped so all trees can share them efficiently.
const FOLIAGE_WIND = { uTime: { value: 0 }, uStrength: { value: 0.35 } };
// Use simpler Lambert shading for mass content to reduce uniforms
const TRUNK_MAT = new THREE.MeshLambertMaterial({
color: 0x6b4f32,
emissive: 0x000000
});
// Foliage material with simple vertex sway, inspired by reference project
const FOLIAGE_MAT = new THREE.MeshLambertMaterial({
color: 0x2f6b3d,
emissive: 0x000000
});
FOLIAGE_MAT.onBeforeCompile = (shader) => {
shader.uniforms.uTime = FOLIAGE_WIND.uTime;
shader.uniforms.uStrength = FOLIAGE_WIND.uStrength;
shader.vertexShader = (
'uniform float uTime;\n' +
'uniform float uStrength;\n' +
shader.vertexShader
).replace(
'#include <begin_vertex>',
`#include <begin_vertex>
float sway = sin(uTime * 1.7 + position.y * 0.35) * 0.5 +
sin(uTime * 0.9 + position.y * 0.7) * 0.5;
transformed.x += sway * uStrength * (0.4 + position.y * 0.06);
transformed.z += cos(uTime * 1.1 + position.y * 0.42) * uStrength * (0.3 + position.y * 0.05);`
);
};
FOLIAGE_MAT.needsUpdate = true;
// Reusable base geometries (scaled per-tree)
// Trunk: slight taper, height 10, translated so base at y=0
const GEO_TRUNK = new THREE.CylinderGeometry(0.7, 1.2, 10, 8, 1, false);
GEO_TRUNK.translate(0, 5, 0);
// Foliage stack (positions expect trunk height ~10)
const GEO_CONE1 = new THREE.ConeGeometry(6, 10, 8); GEO_CONE1.translate(0, 14, 0);
const GEO_CONE2 = new THREE.ConeGeometry(5, 9, 8); GEO_CONE2.translate(0, 20, 0);
const GEO_CONE3 = new THREE.ConeGeometry(4, 8, 8); GEO_CONE3.translate(0, 25, 0);
const GEO_SPH = new THREE.SphereGeometry(3.5, 8, 6); GEO_SPH.translate(0, 28.5, 0);
// Allow main loop to advance wind time
export function tickForest(timeSec) {
FOLIAGE_WIND.uTime.value = timeSec;
// Distance-based chunk culling for grass/flowers (cheap per-frame visibility)
const cam = G.camera;
if (!cam || !G.foliage) return;
const px = cam.position.x;
const pz = cam.position.z;
const gv = CFG.foliage;
const g2 = gv.grassViewDist * gv.grassViewDist;
const f2 = gv.flowerViewDist * gv.flowerViewDist;
for (let i = 0; i < G.foliage.grass.length; i++) {
const m = G.foliage.grass[i];
const dx = (m.position.x) - px;
const dz = (m.position.z) - pz;
m.visible = (dx * dx + dz * dz) <= g2;
}
for (let i = 0; i < G.foliage.flowers.length; i++) {
const m = G.foliage.flowers[i];
const dx = (m.position.x) - px;
const dz = (m.position.z) - pz;
m.visible = (dx * dx + dz * dz) <= f2;
}
}
// --- Ground cover (grass, flowers, bushes, rocks) ---
// Shared materials
const GRASS_MAT = new THREE.MeshLambertMaterial({
color: 0xffffff,
vertexColors: true,
side: THREE.DoubleSide
});
GRASS_MAT.onBeforeCompile = (shader) => {
shader.uniforms.uTime = FOLIAGE_WIND.uTime;
shader.uniforms.uStrength = FOLIAGE_WIND.uStrength;
shader.vertexShader = (
'uniform float uTime;\n' +
'uniform float uStrength;\n' +
shader.vertexShader
).replace(
'#include <begin_vertex>',
`#include <begin_vertex>
#ifdef USE_INSTANCING
// derive a per-instance pseudo-random from translation
float iRand = fract(sin(instanceMatrix[3].x*12.9898 + instanceMatrix[3].z*78.233) * 43758.5453);
#else
float iRand = 0.5;
#endif
float h = clamp(position.y, 0.0, 1.0);
float sway = (sin(uTime*2.2 + iRand*6.2831) * 0.6 + cos(uTime*1.3 + iRand*11.0) * 0.4);
float bend = uStrength * h * h; // bend increases towards tip
transformed.x += sway * bend * 0.25;
transformed.z += sway * bend * 0.18;`
);
};
GRASS_MAT.needsUpdate = true;
const FLOWER_MAT = new THREE.MeshLambertMaterial({
color: 0xffffff,
vertexColors: true,
side: THREE.DoubleSide
});
FLOWER_MAT.onBeforeCompile = (shader) => {
shader.uniforms.uTime = FOLIAGE_WIND.uTime;
shader.uniforms.uStrength = FOLIAGE_WIND.uStrength;
shader.vertexShader = (
'uniform float uTime;\n' +
'uniform float uStrength;\n' +
shader.vertexShader
).replace(
'#include <begin_vertex>',
`#include <begin_vertex>
#ifdef USE_INSTANCING
float iRand = fract(sin(instanceMatrix[3].x*19.123 + instanceMatrix[3].z*47.321) * 15731.123);
#else
float iRand = 0.5;
#endif
float h = clamp(position.y, 0.0, 1.0);
float sway = sin(uTime*2.6 + iRand*8.0);
float bend = uStrength * h;
transformed.x += sway * bend * 0.18;
transformed.z += sway * bend * 0.14;`
);
};
FLOWER_MAT.needsUpdate = true;
const BUSH_MAT = new THREE.MeshLambertMaterial({
color: 0x2b6a37,
flatShading: false
});
const ROCK_MAT = new THREE.MeshLambertMaterial({
color: 0x7b7066,
flatShading: true
});
// Base geometries (kept small, cloned per-chunk to inject bounding spheres)
function makeCrossBladeGeometry(width = 0.5, height = 1.2) {
// Two crossed quads around Y axis
const hw = width * 0.5;
const h = height;
const positions = [
// quad A (X axis)
-hw, 0, 0, hw, 0, 0, hw, h, 0,
-hw, 0, 0, hw, h, 0, -hw, h, 0,
// quad B (Z axis)
0, 0, -hw, 0, 0, hw, 0, h, hw,
0, 0, -hw, 0, h, hw, 0, h, -hw,
];
const colors = [];
for (let i = 0; i < 12; i++) {
const y = positions[i*3 + 1];
const t = y / h; // 0 at base -> 1 at tip
const r = THREE.MathUtils.lerp(0.13, 0.25, t);
const g = THREE.MathUtils.lerp(0.28, 0.55, t);
const b = THREE.MathUtils.lerp(0.12, 0.22, t);
colors.push(r, g, b);
}
const geo = new THREE.BufferGeometry();
geo.setAttribute('position', new THREE.Float32BufferAttribute(positions, 3));
geo.setAttribute('color', new THREE.Float32BufferAttribute(colors, 3));
geo.computeVertexNormals();
return geo;
}
const BASE_GEOM = {
// Smaller blades and petals relative to trees
grass: makeCrossBladeGeometry(0.22, 0.45),
flower: makeCrossBladeGeometry(0.18, 0.32),
bush: new THREE.SphereGeometry(0.8, 8, 6),
rock: new THREE.IcosahedronGeometry(0.7, 0)
};
// Deterministic per-chunk RNG
function lcg(seed) {
let s = (seed >>> 0) || 1;
return () => (s = (1664525 * s + 1013904223) >>> 0) / 4294967296;
}
export function generateGroundCover() {
const S = CFG.foliage;
FOLIAGE_WIND.uStrength.value = S.windStrength;
const half = CFG.forestSize / 2;
const chunk = Math.max(8, S.chunkSize | 0);
const chunksX = Math.ceil(CFG.forestSize / chunk);
const chunksZ = Math.ceil(CFG.forestSize / chunk);
const halfChunk = chunk * 0.5;
const seed = (CFG.seed | 0) ^ (S.seedOffset | 0);
// Helper to set a safe bounding sphere for a chunk-sized instanced mesh
function setChunkBounds(mesh) {
const g = mesh.geometry;
const r = Math.sqrt(halfChunk*halfChunk*2 + 25); // generous Y span
g.boundingSphere = new THREE.Sphere(new THREE.Vector3(0, 0, 0), r);
}
// Skip center clearing smoothly
function densityAt(x, z) {
const r = Math.hypot(x, z);
const edge = CFG.clearRadius;
const k = THREE.MathUtils.clamp((r - edge) / (edge * 1.2), 0, 1);
return THREE.MathUtils.lerp(S.densityNearClear, 1, k);
}
// Reset chunk refs
if (!G.foliage) G.foliage = { grass: [], flowers: [] };
G.foliage.grass.length = 0;
G.foliage.flowers.length = 0;
// Per-chunk generation
for (let iz = 0; iz < chunksZ; iz++) {
for (let ix = 0; ix < chunksX; ix++) {
const cx = -half + ix * chunk + halfChunk;
const cz = -half + iz * chunk + halfChunk;
// Keep within world bounds
if (Math.abs(cx) > half || Math.abs(cz) > half) continue;
// Density scaler by clearing and macro noise for patchiness
const den = densityAt(cx, cz);
const patch = (fbm(cx, cz, 1 / 60, 3, 2, 0.5, seed) * 0.5 + 0.5);
const grassCount = Math.max(0, Math.round(S.grassPerChunk * den * (0.6 + 0.8 * patch)));
const flowerCount = Math.max(0, Math.round(S.flowersPerChunk * den * (0.6 + 0.8 * (1 - patch))));
const bushesCount = Math.max(0, Math.round(S.bushesPerChunk * den * (0.7 + 0.6 * patch)));
const rocksCount = Math.max(0, Math.round(S.rocksPerChunk * den * (0.7 + 0.6 * (1 - patch))));
// No work for empty chunks
if (!grassCount && !flowerCount && !bushesCount && !rocksCount) continue;
const rng = lcg(((ix + 1) * 73856093) ^ ((iz + 1) * 19349663) ^ seed);
// Grass
if (grassCount > 0) {
const geom = BASE_GEOM.grass.clone();
const mesh = new THREE.InstancedMesh(geom, GRASS_MAT, grassCount);
mesh.instanceMatrix.setUsage(THREE.StaticDrawUsage);
mesh.castShadow = false;
mesh.receiveShadow = false;
mesh.position.set(cx, 0, cz);
setChunkBounds(mesh);
const m = new THREE.Matrix4();
const pos = new THREE.Vector3();
const quat = new THREE.Quaternion();
const scl = new THREE.Vector3();
const color = new THREE.Color();
for (let i = 0; i < grassCount; i++) {
const dx = (rng() - 0.5) * chunk;
const dz = (rng() - 0.5) * chunk;
const wx = cx + dx;
const wz = cz + dz;
const wy = getTerrainHeight(wx, wz);
// Simple placement; allow gentle slopes without extra checks
const yaw = rng() * Math.PI * 2;
quat.setFromEuler(new THREE.Euler(0, yaw, 0));
// 1.5x larger than current small baseline
const scale = (0.6 + rng() * 0.35) * 1.5;
scl.set(scale, scale, scale);
pos.set(dx, wy, dz);
m.compose(pos, quat, scl);
mesh.setMatrixAt(i, m);
// instance color variation
color.setRGB(THREE.MathUtils.lerp(0.18, 0.26, rng()), THREE.MathUtils.lerp(0.45, 0.62, rng()), THREE.MathUtils.lerp(0.16, 0.24, rng()));
mesh.setColorAt(i, color);
}
mesh.instanceMatrix.needsUpdate = true;
if (mesh.instanceColor) mesh.instanceColor.needsUpdate = true;
G.scene.add(mesh);
G.foliage.grass.push(mesh);
}
// Flowers
if (flowerCount > 0) {
const geom = BASE_GEOM.flower.clone();
const mesh = new THREE.InstancedMesh(geom, FLOWER_MAT, flowerCount);
mesh.instanceMatrix.setUsage(THREE.StaticDrawUsage);
mesh.castShadow = false;
mesh.receiveShadow = false;
mesh.position.set(cx, 0, cz);
setChunkBounds(mesh);
const m = new THREE.Matrix4();
const pos = new THREE.Vector3();
const quat = new THREE.Quaternion();
const scl = new THREE.Vector3();
const color = new THREE.Color();
for (let i = 0; i < flowerCount; i++) {
const dx = (rng() - 0.5) * chunk;
const dz = (rng() - 0.5) * chunk;
const wx = cx + dx;
const wz = cz + dz;
const wy = getTerrainHeight(wx, wz) + 0.02;
const yaw = rng() * Math.PI * 2;
quat.setFromEuler(new THREE.Euler(0, yaw, 0));
// Flowers 1.5x larger than current small baseline
const scale = (0.7 + rng() * 0.3) * 1.5;
scl.set(scale, scale, scale);
pos.set(dx, wy, dz);
m.compose(pos, quat, scl);
mesh.setMatrixAt(i, m);
// bright palette variations
const palettes = [
new THREE.Color(0xff6fb3), // pink
new THREE.Color(0xffda66), // yellow
new THREE.Color(0x8be37c), // mint
new THREE.Color(0x6fc3ff), // sky
new THREE.Color(0xff8a6f) // peach
];
const base = palettes[Math.floor(rng() * palettes.length)];
color.copy(base).multiplyScalar(0.9 + rng()*0.2);
mesh.setColorAt(i, color);
}
mesh.instanceMatrix.needsUpdate = true;
if (mesh.instanceColor) mesh.instanceColor.needsUpdate = true;
G.scene.add(mesh);
G.foliage.flowers.push(mesh);
}
// Bushes
if (bushesCount > 0) {
const geom = BASE_GEOM.bush.clone();
const mesh = new THREE.InstancedMesh(geom, BUSH_MAT, bushesCount);
mesh.instanceMatrix.setUsage(THREE.StaticDrawUsage);
mesh.castShadow = false;
mesh.receiveShadow = true;
mesh.position.set(cx, 0, cz);
setChunkBounds(mesh);
const m = new THREE.Matrix4();
const pos = new THREE.Vector3();
const quat = new THREE.Quaternion();
const scl = new THREE.Vector3();
for (let i = 0; i < bushesCount; i++) {
const dx = (rng() - 0.5) * chunk;
const dz = (rng() - 0.5) * chunk;
const wx = cx + dx;
const wz = cz + dz;
const wy = getTerrainHeight(wx, wz) + 0.2;
quat.identity();
const s = 0.7 + rng() * 0.8;
scl.set(s, s, s);
pos.set(dx, wy, dz);
m.compose(pos, quat, scl);
mesh.setMatrixAt(i, m);
}
mesh.instanceMatrix.needsUpdate = true;
G.scene.add(mesh);
}
// Rocks
if (rocksCount > 0) {
const geom = BASE_GEOM.rock.clone();
const mesh = new THREE.InstancedMesh(geom, ROCK_MAT, rocksCount);
mesh.instanceMatrix.setUsage(THREE.StaticDrawUsage);
mesh.castShadow = true;
mesh.receiveShadow = true;
mesh.position.set(cx, 0, cz);
setChunkBounds(mesh);
const m = new THREE.Matrix4();
const pos = new THREE.Vector3();
const quat = new THREE.Quaternion();
const scl = new THREE.Vector3();
const color = new THREE.Color();
for (let i = 0; i < rocksCount; i++) {
const dx = (rng() - 0.5) * chunk;
const dz = (rng() - 0.5) * chunk;
const wx = cx + dx;
const wz = cz + dz;
const wy = getTerrainHeight(wx, wz) + 0.05;
const yaw = rng() * Math.PI * 2;
quat.setFromEuler(new THREE.Euler(0, yaw, 0));
const s = 0.4 + rng() * 0.9;
scl.set(s * (0.8 + rng()*0.4), s, s * (0.8 + rng()*0.4));
pos.set(dx, wy, dz);
m.compose(pos, quat, scl);
mesh.setMatrixAt(i, m);
// slight per-rock color tint
color.setHSL(0.07, 0.08, THREE.MathUtils.lerp(0.32, 0.46, rng()));
if (mesh.instanceColor) mesh.setColorAt(i, color);
}
mesh.instanceMatrix.needsUpdate = true;
if (mesh.instanceColor) mesh.instanceColor.needsUpdate = true;
G.scene.add(mesh);
}
}
}
}
// --- Procedural terrain helpers ---
// Hash-based 2D value noise for deterministic hills (pure 32-bit integer math)
function hash2i(xi, yi, seed) {
let h = Math.imul(xi, 374761393) ^ Math.imul(yi, 668265263) ^ Math.imul(seed, 2147483647);
h = Math.imul(h ^ (h >>> 13), 1274126177);
h = (h ^ (h >>> 16)) >>> 0;
return h / 4294967296; // [0,1)
}
function smoothstep(a, b, t) {
if (t <= a) return 0;
if (t >= b) return 1;
t = (t - a) / (b - a);
return t * t * (3 - 2 * t);
}
function lerp(a, b, t) { return a + (b - a) * t; }
function valueNoise2(x, z, seed) {
const xi = Math.floor(x);
const zi = Math.floor(z);
const xf = x - xi;
const zf = z - zi;
const s = smoothstep(0, 1, xf);
const t = smoothstep(0, 1, zf);
const v00 = hash2i(xi, zi, seed);
const v10 = hash2i(xi + 1, zi, seed);
const v01 = hash2i(xi, zi + 1, seed);
const v11 = hash2i(xi + 1, zi + 1, seed);
const x1 = lerp(v00, v10, s);
const x2 = lerp(v01, v11, s);
return lerp(x1, x2, t) * 2 - 1; // [-1,1]
}
function fbm(x, z, baseFreq, octaves, lacunarity, gain, seed) {
let sum = 0;
let amp = 1;
let freq = baseFreq;
for (let i = 0; i < octaves; i++) {
sum += amp * valueNoise2(x * freq, z * freq, seed);
freq *= lacunarity;
amp *= gain;
}
return sum;
}
// Exported height sampler so other systems can stick to the ground
export function getTerrainHeight(x, z) {
const seed = (CFG.seed | 0) ^ 0x9e3779b9;
// Gentle rolling hills with subtle detail
const h1 = fbm(x, z, 1 / 90, 4, 2, 0.5, seed);
const h2 = fbm(x, z, 1 / 28, 3, 2, 0.5, seed + 1337);
const h3 = fbm(x, z, 1 / 9, 2, 2, 0.5, seed + 4242);
let h = h1 * 3.6 + h2 * 1.7 + h3 * 0.6; // total amplitude ~ up to ~6-7
// Soften near the center to keep spawn area playable
const r = Math.hypot(x, z);
const mask = smoothstep(CFG.clearRadius * 0.8, CFG.clearRadius * 1.8, r);
h *= mask;
return h;
}
// --- Procedural ground textures (albedo + normal) ---
function generateGroundTextures(size = 1024) {
const seed = (CFG.seed | 0) ^ 0x51f9ac4d;
const canvas = document.createElement('canvas');
canvas.width = size; canvas.height = size;
const ctx = canvas.getContext('2d', { willReadFrequently: true });
const nCanvas = document.createElement('canvas');
nCanvas.width = size; nCanvas.height = size;
const nctx = nCanvas.getContext('2d');
// Choose a periodic cell count that divides nicely for octaves
// Bigger = less obvious repeats; must keep perf reasonable
const cells = 64; // base lattice cells across the tile
// Periodic hash: wrap lattice coordinates to make the noise tile
function hash2Periodic(xi, yi, period, s) {
const px = ((xi % period) + period) % period;
const py = ((yi % period) + period) % period;
return hash2i(px, py, s);
}
function valueNoise2Periodic(x, z, period, s) {
const xi = Math.floor(x);
const zi = Math.floor(z);
const xf = x - xi;
const zf = z - zi;
const sx = smoothstep(0, 1, xf);
const sz = smoothstep(0, 1, zf);
const v00 = hash2Periodic(xi, zi, period, s);
const v10 = hash2Periodic(xi + 1, zi, period, s);
const v01 = hash2Periodic(xi, zi + 1, period, s);
const v11 = hash2Periodic(xi + 1, zi + 1, period, s);
const x1 = lerp(v00, v10, sx);
const x2 = lerp(v01, v11, sx);
return lerp(x1, x2, sz) * 2 - 1;
}
function fbmPeriodic(x, z, octaves, s) {
let sum = 0;
let amp = 0.5;
let freq = 1;
for (let i = 0; i < octaves; i++) {
const period = cells * freq;
sum += amp * valueNoise2Periodic(x * freq, z * freq, period, s + i * 1013);
freq *= 2;
amp *= 0.5;
}
return sum; // roughly [-1,1]
}
// Precompute a height-ish field for normal derivation (two-pass)
const H = new Float32Array(size * size);
const idx = (x, y) => y * size + x;
for (let y = 0; y < size; y++) {
for (let x = 0; x < size; x++) {
// Map pixel -> tile domain [0, cells]
const u = (x / size) * cells;
const v = (y / size) * cells;
const nLow = fbmPeriodic(u * 0.75, v * 0.75, 3, seed);
const nHi = fbmPeriodic(u * 3.0, v * 3.0, 2, seed + 999);
// Height proxy for normals: mix broad and fine details
const h = 0.6 * (nLow * 0.5 + 0.5) + 0.4 * (nHi * 0.5 + 0.5);
H[idx(x, y)] = h;
}
}
const img = ctx.createImageData(size, size);
const data = img.data;
const nimg = nctx.createImageData(size, size);
const ndata = nimg.data;
// Palettes
const grassDark = [0x20, 0x5a, 0x2b]; // #205a2b deep green
const grassLight = [0x4c, 0x9a, 0x3b]; // #4c9a3b lively green
const dryGrass = [0x88, 0xa0, 0x55]; // #88a055 sun-kissed
const dirtDark = [0x4f, 0x39, 0x2c]; // #4f392c rich soil
const dirtLight = [0x73, 0x5a, 0x48]; // #735a48 lighter soil
function mixColor(a, b, t) {
return [
Math.round(lerp(a[0], b[0], t)),
Math.round(lerp(a[1], b[1], t)),
Math.round(lerp(a[2], b[2], t))
];
}
// Second pass: color + normal
const strength = 2.2; // normal intensity
for (let y = 0; y < size; y++) {
for (let x = 0; x < size; x++) {
const u = (x / size) * cells;
const v = (y / size) * cells;
// Patchiness control
const broad = fbmPeriodic(u * 0.8, v * 0.8, 3, seed + 17) * 0.5 + 0.5;
const detail = fbmPeriodic(u * 3.2, v * 3.2, 2, seed + 23) * 0.5 + 0.5;
let grassness = smoothstep(0.38, 0.62, broad);
grassness = lerp(grassness, grassness * (0.7 + 0.3 * detail), 0.5);
// Choose palette and mix for variation
const grassMid = mixColor(grassDark, grassLight, 0.6);
const grassCol = mixColor(grassMid, dryGrass, 0.25 + 0.35 * detail);
const dirtCol = mixColor(dirtDark, dirtLight, 0.35 + 0.4 * detail);
const col = mixColor(dirtCol, grassCol, grassness);
const p = idx(x, y) * 4;
data[p + 0] = col[0];
data[p + 1] = col[1];
data[p + 2] = col[2];
data[p + 3] = 255;
// Normal from height field with wrapping
const xL = (x - 1 + size) % size, xR = (x + 1) % size;
const yT = (y - 1 + size) % size, yB = (y + 1) % size;
const hL = H[idx(xL, y)], hR = H[idx(xR, y)];
const hT = H[idx(x, yT)], hB = H[idx(x, yB)];
const dx = (hR - hL) * strength;
const dy = (hB - hT) * strength;
let nx = -dx, ny = -dy, nz = 1.0;
const invLen = 1 / Math.hypot(nx, ny, nz);
nx *= invLen; ny *= invLen; nz *= invLen;
ndata[p + 0] = Math.round((nx * 0.5 + 0.5) * 255);
ndata[p + 1] = Math.round((ny * 0.5 + 0.5) * 255);
ndata[p + 2] = Math.round((nz * 0.5 + 0.5) * 255);
ndata[p + 3] = 255;
}
}
ctx.putImageData(img, 0, 0);
nctx.putImageData(nimg, 0, 0);
const map = new THREE.CanvasTexture(canvas);
map.colorSpace = THREE.SRGBColorSpace;
map.generateMipmaps = true;
map.minFilter = THREE.LinearMipmapLinearFilter;
map.magFilter = THREE.LinearFilter;
map.wrapS = map.wrapT = THREE.RepeatWrapping;
const normalMap = new THREE.CanvasTexture(nCanvas);
normalMap.generateMipmaps = true;
normalMap.minFilter = THREE.LinearMipmapLinearFilter;
normalMap.magFilter = THREE.LinearFilter;
normalMap.wrapS = normalMap.wrapT = THREE.RepeatWrapping;
// Anisotropy if available
try {
const maxAniso = G.renderer && G.renderer.capabilities ? G.renderer.capabilities.getMaxAnisotropy() : 0;
if (maxAniso && maxAniso > 0) {
map.anisotropy = Math.min(8, maxAniso);
normalMap.anisotropy = Math.min(8, maxAniso);
}
} catch (_) {}
return { map, normalMap };
}
export function setupGround() {
const segs = 160; // enough resolution for smooth hills
const geometry = new THREE.PlaneGeometry(CFG.forestSize, CFG.forestSize, segs, segs);
geometry.rotateX(-Math.PI / 2);
// Displace vertices along Y using our height function
const pos = geometry.attributes.position;
const colors = new Float32Array(pos.count * 3);
let minY = Infinity, maxY = -Infinity;
for (let i = 0; i < pos.count; i++) {
const x = pos.getX(i);
const z = pos.getZ(i);
const y = getTerrainHeight(x, z);
pos.setY(i, y);
if (y < minY) minY = y;
if (y > maxY) maxY = y;
}
pos.needsUpdate = true;
geometry.computeVertexNormals();
// Macro vertex colors based on slope (normal.y) and height
const nrm = geometry.attributes.normal;
for (let i = 0; i < pos.count; i++) {
const x = pos.getX(i);
const z = pos.getZ(i);
const y = pos.getY(i);
const ny = nrm.getY(i);
const r = Math.hypot(x, z);
const clear = 1.0 - smoothstep(CFG.clearRadius * 0.7, CFG.clearRadius * 1.4, r);
const flat = smoothstep(0.6, 0.96, ny); // flat areas -> grass
const hNorm = (y - minY) / Math.max(1e-5, (maxY - minY));
// Grass tint varies with height; dirt tint more constant
const grassDark = new THREE.Color(0x1f4f28);
const grassLight = new THREE.Color(0x3f8f3a);
const dirtDark = new THREE.Color(0x4a3a2e);
const dirtLight = new THREE.Color(0x6a5040);
const grassTint = grassDark.clone().lerp(grassLight, 0.35 + 0.45 * hNorm);
const dirtTint = dirtDark.clone().lerp(dirtLight, 0.35);
// Reduce grass in the central clearing for readability
const grassness = THREE.MathUtils.clamp(flat * (1.0 - 0.65 * clear), 0, 1);
const tint = dirtTint.clone().lerp(grassTint, grassness);
colors[i * 3 + 0] = tint.r;
colors[i * 3 + 1] = tint.g;
colors[i * 3 + 2] = tint.b;
}
geometry.setAttribute('color', new THREE.BufferAttribute(colors, 3));
// High-frequency detail textures (tileable) + macro vertex tint
const { map, normalMap } = generateGroundTextures(1024);
// Repeat detail across the forest (fewer repeats = larger features)
// Previously: forestSize / 4 (very fine, looked too uniform)
const repeats = Math.max(12, Math.round(CFG.forestSize / 12));
map.repeat.set(repeats, repeats);
normalMap.repeat.set(repeats, repeats);
const material = new THREE.MeshStandardMaterial({
color: 0xffffff,
map,
normalMap,
roughness: 0.95,
metalness: 0.0,
vertexColors: true
});
// Add a subtle world-space macro variation to break tiling repetition
material.onBeforeCompile = (shader) => {
shader.uniforms.uMacroScale = { value: 0.035 }; // frequency in world units
shader.uniforms.uMacroStrength = { value: 0.28 }; // mix into base color
shader.vertexShader = (
'varying vec3 vWorldPos;\n' +
shader.vertexShader
).replace(
'#include <worldpos_vertex>',
`#include <worldpos_vertex>
vWorldPos = worldPosition.xyz;`
);
// Cheap 2D value-noise FBM in fragment to modulate albedo in world space
const NOISE_CHUNK = `
varying vec3 vWorldPos;
uniform float uMacroScale;
uniform float uMacroStrength;
float hash12(vec2 p){
vec3 p3 = fract(vec3(p.xyx) * 0.1031);
p3 += dot(p3, p3.yzx + 33.33);
return fract((p3.x + p3.y) * p3.z);
}
float vnoise(vec2 p){
vec2 i = floor(p);
vec2 f = fract(p);
float a = hash12(i);
float b = hash12(i + vec2(1.0, 0.0));
float c = hash12(i + vec2(0.0, 1.0));
float d = hash12(i + vec2(1.0, 1.0));
vec2 u = f*f*(3.0-2.0*f);
return mix(a, b, u.x) + (c - a) * u.y * (1.0 - u.x) + (d - b) * u.x * u.y;
}
float fbm2(vec2 p){
float t = 0.0;
float amp = 0.5;
for(int i=0;i<4;i++){
t += amp * vnoise(p);
p *= 2.0;
amp *= 0.5;
}
return t;
}
`;
shader.fragmentShader = (
NOISE_CHUNK + shader.fragmentShader
).replace(
'#include <map_fragment>',
`#include <map_fragment>
// World-space macro color variation to reduce visible tiling
vec2 st = vWorldPos.xz * uMacroScale;
float macro = fbm2(st);
macro = macro * 0.5 + 0.5; // [0,1]
float m = mix(0.82, 1.18, macro);
diffuseColor.rgb *= mix(1.0, m, uMacroStrength);`
);
};
const ground = new THREE.Mesh(geometry, material);
ground.receiveShadow = true;
G.scene.add(ground);
G.ground = ground;
// With instanced trees we approximate trunk blocking via spatial grid; keep raycast blockers minimal
G.blockers = [ground];
}
export function generateForest() {
const clearRadiusSq = CFG.clearRadius * CFG.clearRadius;
const halfSize = CFG.forestSize / 2;
let placed = 0;
const maxAttempts = CFG.treeCount * 3;
let attempts = 0;
// Reset data
G.treeColliders.length = 0;
if (!G.treeTrunks) G.treeTrunks = [];
G.treeTrunks.length = 0; // retained for compatibility; no longer populated with individual meshes
if (!G.treeMeshes) G.treeMeshes = [];
G.treeMeshes.length = 0;
// Prepare instanced batches (upper bound capacity = CFG.treeCount)
const trunkIM = new THREE.InstancedMesh(GEO_TRUNK, TRUNK_MAT, CFG.treeCount);
trunkIM.castShadow = true; trunkIM.receiveShadow = true;
const cone1IM = new THREE.InstancedMesh(GEO_CONE1, FOLIAGE_MAT, CFG.treeCount);
const cone2IM = new THREE.InstancedMesh(GEO_CONE2, FOLIAGE_MAT, CFG.treeCount);
const cone3IM = new THREE.InstancedMesh(GEO_CONE3, FOLIAGE_MAT, CFG.treeCount);
const crownIM = new THREE.InstancedMesh(GEO_SPH, FOLIAGE_MAT, CFG.treeCount);
cone1IM.castShadow = cone2IM.castShadow = cone3IM.castShadow = crownIM.castShadow = false;
cone1IM.receiveShadow = cone2IM.receiveShadow = cone3IM.receiveShadow = crownIM.receiveShadow = true;
const m = new THREE.Matrix4();
const quat = new THREE.Quaternion();
const scl = new THREE.Vector3();
while (placed < CFG.treeCount && attempts < maxAttempts) {
attempts++;
const x = (G.random() - 0.5) * CFG.forestSize;
const z = (G.random() - 0.5) * CFG.forestSize;
// Check clearing
if (x * x + z * z < clearRadiusSq) continue;
// Check distance to other trees
let tooClose = false;
for (const collider of G.treeColliders) {
const dx = x - collider.x;
const dz = z - collider.z;
if (dx * dx + dz * dz < Math.pow(collider.radius * 2, 2)) { tooClose = true; break; }
}
if (tooClose) continue;
// Random uniform scale and rotation per tree
const s = 0.75 + G.random() * 0.8; // ~0.75..1.55
const fScale = s * (0.9 + G.random() * 0.15);
const yaw = G.random() * Math.PI * 2;
quat.setFromEuler(new THREE.Euler(0, yaw, 0));
const y = getTerrainHeight(x, z);
m.compose(new THREE.Vector3(x, y, z), quat, new THREE.Vector3(s, s, s));
trunkIM.setMatrixAt(placed, m);
// Foliage uses same transform but with foliage scale factor
m.compose(new THREE.Vector3(x, y, z), quat, new THREE.Vector3(fScale, fScale, fScale));
cone1IM.setMatrixAt(placed, m);
cone2IM.setMatrixAt(placed, m);
cone3IM.setMatrixAt(placed, m);
crownIM.setMatrixAt(placed, m);
// Collider roughly matching trunk base radius
const trunkBaseRadius = 1.2 * s;
G.treeColliders.push({ x, z, radius: trunkBaseRadius });
placed++;
}
trunkIM.count = placed; cone1IM.count = placed; cone2IM.count = placed; cone3IM.count = placed; crownIM.count = placed;
trunkIM.instanceMatrix.needsUpdate = true;
cone1IM.instanceMatrix.needsUpdate = cone2IM.instanceMatrix.needsUpdate = true;
cone3IM.instanceMatrix.needsUpdate = crownIM.instanceMatrix.needsUpdate = true;
if (placed > 0) {
G.scene.add(trunkIM, cone1IM, cone2IM, cone3IM, crownIM);
}
// With instancing, keep blockers to ground; tree collisions handled via grid tests
if (G.ground) {
G.blockers = [G.ground];
} else {
G.blockers = [];
}
buildTreeGrid();
}
// ---- Spatial index for tree colliders ----
// Simple uniform grid over the world to reduce O(N) scans
export function buildTreeGrid(cellSize = 12) {
const half = CFG.forestSize / 2;
const minX = -half, minZ = -half;
const cols = Math.max(1, Math.ceil(CFG.forestSize / cellSize));
const rows = Math.max(1, Math.ceil(CFG.forestSize / cellSize));
const cells = new Array(cols * rows);
for (let i = 0; i < cells.length; i++) cells[i] = [];
function cellIndex(ix, iz) { return iz * cols + ix; }
for (const t of G.treeColliders) {
const ix = Math.max(0, Math.min(cols - 1, Math.floor((t.x - minX) / cellSize)));
const iz = Math.max(0, Math.min(rows - 1, Math.floor((t.z - minZ) / cellSize)));
cells[cellIndex(ix, iz)].push(t);
}
G.treeGrid = { cellSize, minX, minZ, cols, rows, cells };
}
const _nearTrees = [];
function clamp(v, a, b) { return v < a ? a : (v > b ? b : v); }
// Gathers tree colliders around a point within a given radius (XZ plane)
export function getNearbyTrees(x, z, radius = 4) {
_nearTrees.length = 0;
const grid = G.treeGrid;
if (!grid) return _nearTrees;
const { cellSize, minX, minZ, cols, rows, cells } = grid;
const r = Math.max(radius, 0);
const minIx = clamp(Math.floor((x - r - minX) / cellSize), 0, cols - 1);
const maxIx = clamp(Math.floor((x + r - minX) / cellSize), 0, cols - 1);
const minIz = clamp(Math.floor((z - r - minZ) / cellSize), 0, rows - 1);
const maxIz = clamp(Math.floor((z + r - minZ) / cellSize), 0, rows - 1);
for (let iz = minIz; iz <= maxIz; iz++) {
for (let ix = minIx; ix <= maxIx; ix++) {
const cell = cells[iz * cols + ix];
for (let k = 0; k < cell.length; k++) _nearTrees.push(cell[k]);
}
}
return _nearTrees;
}
const _aabbTrees = [];
export function getTreesInAABB(minX, minZ, maxX, maxZ) {
_aabbTrees.length = 0;
const grid = G.treeGrid;
if (!grid) return _aabbTrees;
const { cellSize, minX: gx, minZ: gz, cols, rows, cells } = grid;
const minIx = clamp(Math.floor((minX - gx) / cellSize), 0, cols - 1);
const maxIx = clamp(Math.floor((maxX - gx) / cellSize), 0, cols - 1);
const minIz = clamp(Math.floor((minZ - gz) / cellSize), 0, rows - 1);
const maxIz = clamp(Math.floor((maxZ - gz) / cellSize), 0, rows - 1);
for (let iz = minIz; iz <= maxIz; iz++) {
for (let ix = minIx; ix <= maxIx; ix++) {
const cell = cells[iz * cols + ix];
for (let k = 0; k < cell.length; k++) _aabbTrees.push(cell[k]);
}
}
return _aabbTrees;
}
// Fast 2D segment-vs-circle test
function segIntersectsCircle(x1, z1, x2, z2, cx, cz, r) {
const vx = x2 - x1, vz = z2 - z1;
const wx = cx - x1, wz = cz - z1;
const vv = vx * vx + vz * vz;
if (vv <= 1e-6) return false;
let t = (wx * vx + wz * vz) / vv;
if (t < 0) t = 0; else if (t > 1) t = 1;
const px = x1 + t * vx, pz = z1 + t * vz;
const dx = cx - px, dz = cz - pz;
return (dx * dx + dz * dz) <= r * r;
}
// Approximate line-of-sight using tree cylinders and terrain samples (no raycaster)
export function hasLineOfSight(from, to) {
// Terrain occlusion: sample a few points along the ray
const steps = 6;
for (let i = 1; i < steps; i++) {
const t = i / steps;
const x = from.x + (to.x - from.x) * t;
const z = from.z + (to.z - from.z) * t;
const y = from.y + (to.y - from.y) * t;
const gy = getTerrainHeight(x, z) + 0.1;
if (y <= gy) return false;
}
// Tree occlusion using grid-restricted set
const minX = Math.min(from.x, to.x) - 2.0;
const maxX = Math.max(from.x, to.x) + 2.0;
const minZ = Math.min(from.z, to.z) - 2.0;
const maxZ = Math.max(from.z, to.z) + 2.0;
const candidates = getTreesInAABB(minX, minZ, maxX, maxZ);
for (let i = 0; i < candidates.length; i++) {
const t = candidates[i];
// Use a slightly inflated radius to account for foliage
const r = t.radius + 0.3;
if (segIntersectsCircle(from.x, from.z, to.x, to.z, t.x, t.z, r)) {
// If the segment is sufficiently high (e.g., arrow arc), allow pass
// Estimate height at closest approach t in [0,1]
const vx = to.x - from.x, vz = to.z - from.z;
const wx = t.x - from.x, wz = t.z - from.z;
const vv = vx * vx + vz * vz;
let u = (wx * vx + wz * vz) / (vv || 1);
if (u < 0) u = 0; else if (u > 1) u = 1;
const yAt = from.y + (to.y - from.y) * u;
if (yAt < 8) return false; // below canopy -> blocked
}
}
return true;
}
|