File size: 2,736 Bytes
58ed1c6
f27ac44
58ed1c6
 
921649c
58ed1c6
 
 
 
f27ac44
 
 
 
 
 
 
 
921649c
f27ac44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921649c
58ed1c6
f27ac44
 
921649c
 
f27ac44
 
 
921649c
f27ac44
 
 
 
 
 
921649c
 
f27ac44
58ed1c6
f27ac44
 
 
 
 
 
 
58ed1c6
f27ac44
921649c
 
58ed1c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import BertTokenizer, BertForSequenceClassification
import torch
import gradio as gr

app = FastAPI()

# Prediction labels
LABELS = [
    'Login Issue', 
    'Booking Issue', 
    'Delivery Issue', 
    'Laboratory Issue', 
    'Application Issue'
]

# CORS Configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Load model and tokenizer
try:
    model = BertForSequenceClassification.from_pretrained("./saved_model1")
    tokenizer = BertTokenizer.from_pretrained("./saved_model1")
    model.eval()
except Exception as e:
    raise RuntimeError(f"Model loading failed: {str(e)}")

# Request Model
class PredictionRequest(BaseModel):
    issue: str

# FastAPI Endpoint
@app.post("/predict")
async def predict(request: PredictionRequest):
    try:
        inputs = tokenizer(
            request.issue, 
            return_tensors="pt", 
            truncation=True, 
            padding=True,
            max_length=512
        )
        
        with torch.no_grad():
            outputs = model(**inputs)
            probabilities = torch.softmax(outputs.logits, dim=1)
            label_idx = torch.argmax(probabilities).item()
            
        return {
            "category": LABELS[label_idx],
            "confidence": round(probabilities[0][label_idx].item(), 4)
        }
        
    except Exception as e:
        raise HTTPException(
            status_code=500, 
            detail=f"Prediction error: {str(e)}"
        )

# Gradio Interface
def gradio_classifier(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
        probs = torch.softmax(outputs.logits, dim=1)
        pred_idx = torch.argmax(probs).item()
    
    return {
        "Prediction": LABELS[pred_idx],
        "Confidence Score": float(probs[0][pred_idx].item()),
        "All Probabilities": {
            label: round(float(probs[0][i]), 4) 
            for i, label in enumerate(LABELS)
        }
    }

# Mount Gradio interface
gradio_app = gr.Interface(
    fn=gradio_classifier,
    inputs=gr.Textbox(lines=3, placeholder="Enter issue description...", label="Issue"),
    outputs=[
        gr.Label(label="Predicted Category"),
        gr.Number(label="Confidence Score"),
        gr.JSON(label="Class Probabilities")
    ],
    title="Issue Classifier",
    description="BERT-based classification system for customer support issues"
)

app = gr.mount_gradio_app(app, gradio_app, path="/gradio")