Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
app = FastAPI() | |
# Load model and tokenizer once on startup | |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5p-220m") | |
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5p-220m") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
class GenerationRequest(BaseModel): | |
prompt: str | |
max_length: int = 2048 | |
num_beams: int = 3 | |
early_stopping: bool = True | |
no_repeat_ngram_size: int = 3 | |
async def generate_text(request: GenerationRequest): | |
inputs = tokenizer(request.prompt, return_tensors="pt").to(device) | |
outputs = model.generate( | |
**inputs, | |
max_length=request.max_length, | |
num_beams=request.num_beams, | |
early_stopping=request.early_stopping, | |
no_repeat_ngram_size=request.no_repeat_ngram_size, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return {"generated_text": output_text} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8080) | |