vidhanm
was working in logs
ff119bb
raw
history blame
9.76 kB
import sys
import os
from typing import Optional
from PIL import Image as PILImage
# Add the cloned nanoVLM directory to Python's system path
NANOVLM_REPO_PATH = "/app/nanoVLM" # This path is where your Dockerfile clones huggingface/nanoVLM
if NANOVLM_REPO_PATH not in sys.path:
print(f"DEBUG: Adding {NANOVLM_REPO_PATH} to sys.path")
sys.path.insert(0, NANOVLM_REPO_PATH)
import gradio as gr
import torch
from transformers import AutoProcessor # Using AutoProcessor as in the successful generate.py
# Import the custom VisionLanguageModel class
VisionLanguageModel = None
try:
print("DEBUG: Attempting to import VisionLanguageModel from models.vision_language_model")
from models.vision_language_model import VisionLanguageModel
print("DEBUG: Successfully imported VisionLanguageModel.")
except ImportError as e:
print(f"CRITICAL ERROR: Importing VisionLanguageModel failed: {e}")
except Exception as e:
print(f"CRITICAL ERROR: An unexpected error occurred during VisionLanguageModel import: {e}")
# --- Device Setup ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"DEBUG: Using device: {device}")
# --- Configuration ---
model_repo_id = "lusxvr/nanoVLM-222M" # Used for both processor and model weights
print(f"DEBUG: Model Repository ID for processor and model: {model_repo_id}")
# --- Initialize ---
processor = None
model = None
if VisionLanguageModel: # Only proceed if custom model class was imported
try:
# Load processor using AutoProcessor, mirroring generate.py
print(f"DEBUG: Loading processor using AutoProcessor.from_pretrained('{model_repo_id}')")
# generate.py doesn't explicitly use trust_remote_code=True for processor,
# but it might be implicitly active in your local transformers or not needed if processor_config is clear.
# Let's try without it first for AutoProcessor, then add if "Unrecognized model" for processor reappears.
processor = AutoProcessor.from_pretrained(model_repo_id) # Try without TRC first for processor
print(f"DEBUG: AutoProcessor loaded: {type(processor)}")
# Ensure tokenizer has pad_token set if it's GPT-2 based (AutoProcessor should handle a tokenizer component)
if hasattr(processor, 'tokenizer') and processor.tokenizer is not None:
current_tokenizer = processor.tokenizer
if getattr(current_tokenizer, 'pad_token', None) is None and hasattr(current_tokenizer, 'eos_token'):
current_tokenizer.pad_token = current_tokenizer.eos_token
print(f"DEBUG: Set processor.tokenizer.pad_token to eos_token (ID: {current_tokenizer.eos_token_id})")
else:
print("WARN: Processor does not have a 'tokenizer' attribute or it's None. Cannot set pad_token.")
# Load model using VisionLanguageModel.from_pretrained, mirroring generate.py
print(f"DEBUG: Loading model VisionLanguageModel.from_pretrained('{model_repo_id}')")
# The custom VLM.from_pretrained doesn't take trust_remote_code
model = VisionLanguageModel.from_pretrained(model_repo_id).to(device)
print(f"DEBUG: VisionLanguageModel loaded: {type(model)}")
model.eval()
print("DEBUG: Model set to eval() mode.")
except Exception as e:
print(f"CRITICAL ERROR loading model or processor: {e}")
import traceback
traceback.print_exc()
processor = None; model = None # Ensure they are None if loading fails
else:
print("CRITICAL ERROR: VisionLanguageModel class not imported. Cannot load model.")
# --- Text Generation Function ---
def generate_text_for_image(image_input_pil: Optional[PILImage.Image], prompt_input_str: Optional[str]) -> str:
print(f"DEBUG (generate_text_for_image): Received prompt: '{prompt_input_str}'")
if model is None or processor is None:
print("ERROR (generate_text_for_image): Model or processor not loaded.")
return "Error: Model or processor not loaded. Please check the application logs."
if image_input_pil is None:
print("WARN (generate_text_for_image): No image uploaded.")
return "Please upload an image."
if not prompt_input_str: # Check for empty or None prompt
print("WARN (generate_text_for_image): No prompt provided.")
return "Please provide a prompt."
try:
current_pil_image = image_input_pil
if not isinstance(current_pil_image, PILImage.Image): # Should be PIL from Gradio's type="pil"
print(f"WARN (generate_text_for_image): Input image not PIL, type: {type(current_pil_image)}. Converting.")
current_pil_image = PILImage.fromarray(current_pil_image)
if current_pil_image.mode != "RGB":
print(f"DEBUG (generate_text_for_image): Converting image from {current_pil_image.mode} to RGB.")
current_pil_image = current_pil_image.convert("RGB")
print(f"DEBUG (generate_text_for_image): Image prepped - size: {current_pil_image.size}, mode: {current_pil_image.mode}")
# Prepare inputs using the AutoProcessor, as in generate.py
print("DEBUG (generate_text_for_image): Processing inputs with AutoProcessor...")
inputs = processor(
text=[prompt_input_str], images=current_pil_image, return_tensors="pt"
).to(device)
print(f"DEBUG (generate_text_for_image): Inputs from AutoProcessor - keys: {inputs.keys()}")
print(f"DEBUG (generate_text_for_image): input_ids shape: {inputs['input_ids'].shape}, values: {inputs['input_ids']}")
print(f"DEBUG (generate_text_for_image): pixel_values shape: {inputs['pixel_values'].shape}")
attention_mask = inputs.get('attention_mask')
if attention_mask is None: # Should be provided by AutoProcessor
print("WARN (generate_text_for_image): attention_mask not in processor output. Creating default.")
attention_mask = torch.ones_like(inputs['input_ids']).to(device)
print(f"DEBUG (generate_text_for_image): attention_mask shape: {attention_mask.shape}")
print("DEBUG (generate_text_for_image): Calling model.generate...")
# Signature for nanoVLM's generate: (self, input_ids, image, attention_mask, max_new_tokens, ...)
generated_ids_tensor = model.generate(
inputs['input_ids'],
inputs['pixel_values'], # This is the 'image' argument for the model's generate method
attention_mask,
max_new_tokens=50, # Consistent with successful generate.py test
temperature=0.7, # From generate.py defaults (or adjust as preferred)
top_k=50, # From generate.py defaults (or adjust as preferred)
# greedy=False is default in nanoVLM's generate
)
print(f"DEBUG (generate_text_for_image): Raw generated_ids: {generated_ids_tensor}")
# Use processor.batch_decode, as in generate.py
generated_text_list = processor.batch_decode(generated_ids_tensor, skip_special_tokens=True)
print(f"DEBUG (generate_text_for_image): Decoded text list: {generated_text_list}")
generated_text_str = generated_text_list[0] if generated_text_list else ""
# Optional: Clean up prompt if echoed
cleaned_text_str = generated_text_str
if prompt_input_str and generated_text_str.startswith(prompt_input_str):
cleaned_text_str = generated_text_str[len(prompt_input_str):].lstrip(" ,.:")
print(f"DEBUG (generate_text_for_image): Final cleaned text: '{cleaned_text_str}'")
return cleaned_text_str.strip()
except Exception as e:
print(f"CRITICAL ERROR during generation: {e}")
import traceback
traceback.print_exc()
return f"Error during generation: {str(e)}. Check logs."
# --- Gradio Interface ---
description_md = """
## nanoVLM-222M Interactive Demo
Upload an image and type a prompt to get a description or answer from the model.
This Space uses the `lusxvr/nanoVLM-222M` model weights with the `huggingface/nanoVLM` model code.
"""
iface = None
# Only define the interface if the model and processor loaded successfully
if VisionLanguageModel and model and processor:
try:
print("DEBUG: Defining Gradio interface...")
iface = gr.Interface(
fn=generate_text_for_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Your Prompt / Question", info="e.g., 'describe this image in detail'")
],
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
title="nanoVLM-222M Demo",
description=description_md,
allow_flagging="never" # No examples or caching for now to keep it simple
)
print("DEBUG: Gradio interface defined successfully.")
except Exception as e:
print(f"CRITICAL ERROR defining Gradio interface: {e}")
import traceback; traceback.print_exc()
else:
print("WARN: Model and/or processor did not load. Gradio interface will not be created.")
# --- Launch Gradio App ---
if __name__ == "__main__":
print("DEBUG: Entered __main__ block for Gradio launch.")
if iface is not None:
print("DEBUG: Attempting to launch Gradio interface...")
try:
iface.launch(server_name="0.0.0.0", server_port=7860)
print("DEBUG: Gradio launch command issued.")
except Exception as e:
print(f"CRITICAL ERROR launching Gradio interface: {e}")
import traceback; traceback.print_exc()
else:
print("CRITICAL ERROR: Gradio interface (iface) is None or not defined due to loading errors. Cannot launch.")