wizzseen's picture
Upload 948 files
8a6df40 verified
import torch
import torch.nn as nn
from torch.nn import functional as F
from torchvision.utils import make_grid as make_image_grid
import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from cp_dataset_test import CPDatasetTest
from networks import ConditionGenerator, VGGLoss, load_checkpoint, save_checkpoint, make_grid
from network_generator import SPADEGenerator, MultiscaleDiscriminator, GANLoss
from sync_batchnorm import DataParallelWithCallback
from tensorboardX import SummaryWriter
from utils import create_network, visualize_segmap
import sys
from tqdm import tqdm
import numpy as np
from torch.utils.data import Subset
from torchvision.transforms import transforms
import eval_models as models
import torchgeometry as tgm
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch_size', type=int, default=8)
parser.add_argument('--fp16', action='store_true', help='use amp')
# Cuda availability
parser.add_argument('--cuda',default=False, help='cuda or cpu')
parser.add_argument("--dataroot", default="./data/")
parser.add_argument("--datamode", default="train")
parser.add_argument("--data_list", default="train_pairs.txt")
parser.add_argument("--fine_width", type=int, default=768)
parser.add_argument("--fine_height", type=int, default=1024)
parser.add_argument("--radius", type=int, default=20)
parser.add_argument("--grid_size", type=int, default=5)
parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, help='condition generator checkpoint')
parser.add_argument('--gen_checkpoint', type=str, default='', help='gen checkpoint')
parser.add_argument('--dis_checkpoint', type=str, default='', help='dis checkpoint')
parser.add_argument("--tensorboard_count", type=int, default=100)
parser.add_argument("--display_count", type=int, default=100)
parser.add_argument("--save_count", type=int, default=10000)
parser.add_argument("--load_step", type=int, default=0)
parser.add_argument("--keep_step", type=int, default=100000)
parser.add_argument("--decay_step", type=int, default=100000)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
# test
parser.add_argument("--lpips_count", type=int, default=1000)
parser.add_argument("--test_datasetting", default="paired")
parser.add_argument("--test_dataroot", default="./data/")
parser.add_argument("--test_data_list", default="test_pairs.txt")
# Hyper-parameters
parser.add_argument('--G_lr', type=float, default=0.0001, help='initial learning rate for adam')
parser.add_argument('--D_lr', type=float, default=0.0004, help='initial learning rate for adam')
# SEAN-related hyper-parameters
parser.add_argument('--GMM_const', type=float, default=None, help='constraint for GMM module')
parser.add_argument('--semantic_nc', type=int, default=13, help='# of input label classes without unknown class')
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--num_upsampling_layers', choices=['normal', 'more', 'most'], default='most',
help='If \'more\', add upsampling layer between the two middle resnet blocks. '
'If \'most\', also add one more (upsampling + resnet) layer at the end of the generator.')
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss')
parser.add_argument('--no_vgg_loss', action='store_true', help='if specified, do *not* use VGG feature matching loss')
parser.add_argument('--lambda_l1', type=float, default=1.0, help='weight for feature matching loss')
parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
parser.add_argument('--lambda_vgg', type=float, default=10.0, help='weight for vgg loss')
# D
parser.add_argument('--n_layers_D', type=int, default=3, help='# layers in each discriminator')
parser.add_argument('--netD_subarch', type=str, default='n_layer', help='architecture of each discriminator')
parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to be used in multiscale')
# Training
parser.add_argument('--GT', action='store_true')
parser.add_argument('--occlusion', action='store_true')
# tocg
# network
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
# visualize
parser.add_argument("--num_test_visualize", type=int, default=3)
opt = parser.parse_args()
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
assert len(opt.gpu_ids) == 0 or opt.batch_size % len(opt.gpu_ids) == 0, \
"Batch size %d is wrong. It must be a multiple of # GPUs %d." \
% (opt.batch_size, len(opt.gpu_ids))
return opt
def train(opt, train_loader, test_loader, test_vis_loader, board, tocg, generator, discriminator, model):
"""
Train Generator
"""
# Model
if not opt.GT:
tocg.cuda()
tocg.eval()
generator.train()
discriminator.train()
model.eval()
# criterion
if opt.fp16:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.HalfTensor)
else:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.FloatTensor)
# criterionL1 = nn.L1Loss()
criterionFeat = nn.L1Loss()
criterionVGG = VGGLoss(opt)
# optimizer
optimizer_gen = torch.optim.Adam(generator.parameters(), lr=opt.G_lr, betas=(0, 0.9))
scheduler_gen = torch.optim.lr_scheduler.LambdaLR(optimizer_gen, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
optimizer_dis = torch.optim.Adam(discriminator.parameters(), lr=opt.D_lr, betas=(0, 0.9))
scheduler_dis = torch.optim.lr_scheduler.LambdaLR(optimizer_dis, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
if opt.fp16:
if not opt.GT:
from apex import amp
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
else:
from apex import amp
[generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
[generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
if len(opt.gpu_ids) > 0:
if not opt.GT:
tocg = DataParallelWithCallback(tocg, device_ids=opt.gpu_ids)
generator = DataParallelWithCallback(generator, device_ids=opt.gpu_ids)
discriminator = DataParallelWithCallback(discriminator, device_ids=opt.gpu_ids)
criterionGAN = DataParallelWithCallback(criterionGAN, device_ids=opt.gpu_ids)
criterionFeat = DataParallelWithCallback(criterionFeat, device_ids=opt.gpu_ids)
criterionVGG = DataParallelWithCallback(criterionVGG, device_ids=opt.gpu_ids)
upsample = torch.nn.Upsample(scale_factor=4, mode='bilinear')
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
gauss = gauss.cuda()
for step in tqdm(range(opt.load_step, opt.keep_step + opt.decay_step)):
iter_start_time = time.time()
inputs = train_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
grid = make_grid(N, iH, iW,opt)
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
# occlusion
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
# region_mask = parse[:, 2:3] - warped_cm
# region_mask[region_mask < 0.0] = 0.0
# parse_rn = torch.cat((parse, region_mask), dim=1)
# parse_rn[:, 2:3] -= region_mask
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
# --------------------------------------------------------------------------------------------------------------
# Train the generator
# --------------------------------------------------------------------------------------------------------------
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
fake_concat = torch.cat((parse, output_paired), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
# the prediction contains the intermediate outputs of multiscale GAN,
# so it's usually a list
if type(pred) == list:
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
else:
pred_fake = pred[:pred.size(0) // 2]
pred_real = pred[pred.size(0) // 2:]
G_losses = {}
G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False)
if not opt.no_ganFeat_loss:
num_D = len(pred_fake)
GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
for i in range(num_D): # for each discriminator
# last output is the final prediction, so we exclude it
num_intermediate_outputs = len(pred_fake[i]) - 1
for j in range(num_intermediate_outputs): # for each layer output
unweighted_loss = criterionFeat(pred_fake[i][j], pred_real[i][j].detach())
GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
G_losses['GAN_Feat'] = GAN_Feat_loss
if not opt.no_vgg_loss:
G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg
loss_gen = sum(G_losses.values()).mean()
optimizer_gen.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_gen, optimizer_gen, loss_id=0) as loss_gen_scaled:
loss_gen_scaled.backward()
else:
loss_gen.backward()
optimizer_gen.step()
# --------------------------------------------------------------------------------------------------------------
# Train the discriminator
# --------------------------------------------------------------------------------------------------------------
with torch.no_grad():
output = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
output = output.detach()
output.requires_grad_()
fake_concat = torch.cat((parse, output), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
# the prediction contains the intermediate outputs of multiscale GAN,
# so it's usually a list
if type(pred) == list:
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
else:
pred_fake = pred[:pred.size(0) // 2]
pred_real = pred[pred.size(0) // 2:]
D_losses = {}
D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)
loss_dis = sum(D_losses.values()).mean()
optimizer_dis.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_dis, optimizer_dis, loss_id=1) as loss_dis_scaled:
loss_dis_scaled.backward()
else:
loss_dis.backward()
optimizer_dis.step()
# --------------------------------------------------------------------------------------------------------------
# recording
# --------------------------------------------------------------------------------------------------------------
if (step + 1) % opt.tensorboard_count == 0:
i = 0
grid = make_image_grid([(c_paired[0].cpu() / 2 + 0.5), (cm[0].cpu()).expand(3, -1, -1), ((pose.cpu()[0]+1)/2), visualize_segmap(parse_agnostic.cpu(), batch=i),
(warped_cloth_paired[i].cpu() / 2 + 0.5), (agnostic[i].cpu() / 2 + 0.5), (pose[i].cpu() / 2 + 0.5), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(output[i].cpu() / 2 + 0.5), (im[i].cpu() / 2 + 0.5)],
nrow=4)
board.add_images('train_images', grid.unsqueeze(0), step + 1)
board.add_scalar('Loss/gen', loss_gen.item(), step + 1)
board.add_scalar('Loss/gen/adv', G_losses['GAN'].mean().item(), step + 1)
#board.add_scalar('Loss/gen/l1', G_losses['L1'].mean().item(), step + 1)
board.add_scalar('Loss/gen/feat', G_losses['GAN_Feat'].mean().item(), step + 1)
board.add_scalar('Loss/gen/vgg', G_losses['VGG'].mean().item(), step + 1)
board.add_scalar('Loss/dis', loss_dis.item(), step + 1)
board.add_scalar('Loss/dis/adv_fake', D_losses['D_Fake'].mean().item(), step + 1)
board.add_scalar('Loss/dis/adv_real', D_losses['D_Real'].mean().item(), step + 1)
# unpaired visualize
generator.eval()
inputs = test_vis_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['unpaired'].cuda()
c_paired = inputs['cloth']['unpaired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
grid = make_grid(N, iH, iW,opt)
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
output = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
for i in range(opt.num_test_visualize):
grid = make_image_grid([(c_paired[i].cpu() / 2 + 0.5), (cm[i].cpu()).expand(3, -1, -1), ((pose.cpu()[i]+1)/2), visualize_segmap(parse_agnostic.cpu(), batch=i),
(warped_cloth_paired[i].cpu() / 2 + 0.5), (agnostic[i].cpu() / 2 + 0.5), (pose[i].cpu() / 2 + 0.5), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(output[i].cpu() / 2 + 0.5), (im[i].cpu() / 2 + 0.5)],
nrow=4)
board.add_images(f'test_images/{i}', grid.unsqueeze(0), step + 1)
generator.train()
if (step + 1) % opt.lpips_count == 0:
generator.eval()
T2 = transforms.Compose([transforms.Resize((128, 128))])
lpips_list = []
avg_distance = 0.0
with torch.no_grad():
print("LPIPS")
for i in tqdm(range(500)):
inputs = test_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW,opt)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
avg_distance += model.forward(T2(im), T2(output_paired))
avg_distance = avg_distance / 500
print(f"LPIPS{avg_distance}")
board.add_scalar('test/LPIPS', avg_distance, step + 1)
generator.train()
if (step + 1) % opt.display_count == 0:
t = time.time() - iter_start_time
print("step: %8d, time: %.3f, G_loss: %.4f, G_adv_loss: %.4f, D_loss: %.4f, D_fake_loss: %.4f, D_real_loss: %.4f"
% (step + 1, t, loss_gen.item(), G_losses['GAN'].mean().item(), loss_dis.item(),
D_losses['D_Fake'].mean().item(), D_losses['D_Real'].mean().item()), flush=True)
if (step + 1) % opt.save_count == 0:
save_checkpoint(generator.module, os.path.join(opt.checkpoint_dir, opt.name, 'gen_step_%06d.pth' % (step + 1)),opt)
save_checkpoint(discriminator.module, os.path.join(opt.checkpoint_dir, opt.name, 'dis_step_%06d.pth' % (step + 1)),opt)
if (step + 1) % 1000 == 0:
scheduler_gen.step()
scheduler_dis.step()
def main():
opt = get_opt()
print(opt)
print("Start to train %s!" % opt.name)
# create dataset
train_dataset = CPDataset(opt)
# create dataloader
train_loader = CPDataLoader(opt, train_dataset)
# test dataloader
opt.batch_size = 1
opt.dataroot = opt.test_dataroot
opt.datamode = 'test'
opt.data_list = opt.test_data_list
test_dataset = CPDatasetTest(opt)
test_dataset = Subset(test_dataset, np.arange(500))
test_loader = CPDataLoader(opt, test_dataset)
# test vis loader
opt.batch_size = opt.num_test_visualize
test_vis_dataset = CPDatasetTest(opt)
test_vis_loader = CPDataLoader(opt, test_vis_dataset)
# visualization
if not os.path.exists(opt.tensorboard_dir):
os.makedirs(opt.tensorboard_dir)
board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.name))
# warping-seg Model
tocg = None
if not opt.GT:
input1_nc = 4 # cloth + cloth-mask
input2_nc = opt.semantic_nc + 3 # parse_agnostic + densepose
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=13, ngf=96, norm_layer=nn.BatchNorm2d)
# Load Checkpoint
load_checkpoint(tocg, opt.tocg_checkpoint)
# Generator model
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
if len(opt.gpu_ids) > 0:
assert(torch.cuda.is_available())
generator.cuda()
generator.init_weights(opt.init_type, opt.init_variance)
discriminator = create_network(MultiscaleDiscriminator, opt)
# lpips
model = models.PerceptualLoss(model='net-lin',net='alex',use_gpu=True)
# Load Checkpoint
if not opt.gen_checkpoint == '' and os.path.exists(opt.gen_checkpoint):
load_checkpoint(generator, opt.gen_checkpoint)
load_checkpoint(discriminator, opt.dis_checkpoint)
# Train
train(opt, train_loader, test_loader, test_vis_loader, board, tocg, generator, discriminator, model)
# Save Checkpoint
save_checkpoint(generator, os.path.join(opt.checkpoint_dir, opt.name, 'gen_model_final.pth'),opt)
save_checkpoint(discriminator, os.path.join(opt.checkpoint_dir, opt.name, 'dis_model_final.pth'),opt)
print("Finished training %s!" % opt.name)
if __name__ == "__main__":
main()