wushuang98's picture
Upload 197 files
bcb05d1 verified
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
ACTIVATION_FUNCTIONS = {
"swish": nn.SiLU(),
"silu": nn.SiLU(),
"mish": nn.Mish(),
"gelu": nn.GELU(),
"relu": nn.ReLU(),
}
def get_activation(act_fn: str) -> nn.Module:
act_fn = act_fn.lower()
if act_fn in ACTIVATION_FUNCTIONS:
return ACTIVATION_FUNCTIONS[act_fn]
else:
raise ValueError(f"Unsupported activation function: {act_fn}")
def get_down_block(
down_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
add_downsample: bool,
resnet_eps: float,
resnet_act_fn: str,
resnet_groups: Optional[int] = None,
downsample_padding: Optional[int] = None,
dropout: float = 0.0,
) -> Union[
"DownBlock3D",
]:
if down_block_type == "DownBlock3D":
return DownBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
dropout=dropout,
)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(
up_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
prev_output_channel: int,
add_upsample: bool,
resnet_eps: float,
resnet_act_fn: str,
resnet_groups: Optional[int] = None,
dropout: float = 0.0,
) -> Union[
"UpBlock3D",
]:
if up_block_type == "UpBlock3D":
return UpBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
dropout=dropout,
)
raise ValueError(f"{up_block_type} does not exist.")
class Downsample3D(nn.Module):
def __init__(
self,
channels: int,
out_channels: Optional[int] = None,
kernel_size=2,
bias=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
stride = 2
self.conv = nn.Conv3d(
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias
)
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
assert hidden_states.shape[1] == self.channels
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states)
return hidden_states
class Upsample3D(nn.Module):
def __init__(
self,
channels: int,
use_conv: bool = False,
use_conv_transpose: bool = True,
out_channels: Optional[int] = None,
name: str = "conv",
kernel_size: Optional[int] = None,
padding=1,
bias=True,
interpolate=False,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.interpolate = interpolate
conv = None
if use_conv_transpose:
conv = nn.ConvTranspose3d(
channels, self.out_channels, kernel_size=2, stride=2, padding=0, bias=bias
)
elif use_conv:
if kernel_size is None:
kernel_size = 3
conv = nn.Conv3d(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
if name == "conv":
self.conv = conv
else:
self.Conv2d_0 = conv
def forward(self, hidden_states: torch.Tensor, output_size: Optional[int] = None) -> torch.Tensor:
assert hidden_states.shape[1] == self.channels
if self.use_conv_transpose:
return self.conv(hidden_states)
if hidden_states.shape[0] >= 64 or hidden_states.shape[-1] >= 64:
hidden_states = hidden_states.contiguous()
if self.interpolate:
if output_size is None:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
else:
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
if self.use_conv:
if self.name == "conv":
hidden_states = self.conv(hidden_states)
else:
hidden_states = self.Conv2d_0(hidden_states)
return hidden_states
class ResnetBlock3D(nn.Module):
def __init__(
self,
*,
in_channels: int,
out_channels: Optional[int] = None,
conv_shortcut: bool = False,
dropout: float = 0.0,
groups: int = 32,
groups_out: Optional[int] = None,
eps: float = 1e-6,
non_linearity: str = "swish",
output_scale_factor: float = 1.0,
use_in_shortcut: Optional[bool] = None,
up: bool = False,
down: bool = False,
conv_shortcut_bias: bool = True,
conv_2d_out_channels: Optional[int] = None,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.up = up
self.down = down
self.output_scale_factor = output_scale_factor
if groups_out is None:
groups_out = groups
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
self.dropout = torch.nn.Dropout(dropout)
conv_2d_out_channels = conv_2d_out_channels or out_channels
self.conv2 = nn.Conv3d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
self.nonlinearity = get_activation(non_linearity)
self.upsample = self.downsample = None
if self.up:
self.upsample = Upsample3D(in_channels, use_conv=False)
elif self.down:
self.downsample = Downsample3D(in_channels)
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
self.conv_shortcut = None
if self.use_in_shortcut:
self.conv_shortcut = nn.Conv3d(
in_channels,
conv_2d_out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=conv_shortcut_bias,
)
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = input_tensor
dtype = hidden_states.dtype
hidden_states = self.norm1(hidden_states.float()).to(dtype)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = self.upsample(input_tensor)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
input_tensor = self.downsample(input_tensor)
hidden_states = self.downsample(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states.float()).to(dtype)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
class DownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
output_scale_factor: float = 1.0,
add_downsample: bool = True,
downsample_padding: int = 1,
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock3D(
in_channels=in_channels,
out_channels=out_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
)
)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample3D(
out_channels,
out_channels=out_channels
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
output_states = ()
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class UpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock3D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
)
)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
upsample_size: Optional[int] = None,
) -> torch.Tensor:
for resnet in self.resnets:
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
class UNetMidBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
dropout: float = 0.0,
num_layers: int = 2,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
output_scale_factor: float = 1.0,
use_linear_projection: bool = True,
):
super().__init__()
self.has_cross_attention = True
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
resnets = [
ResnetBlock3D(
in_channels=in_channels,
out_channels=in_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
)
]
for _ in range(num_layers):
resnets.append(
ResnetBlock3D(
in_channels=in_channels,
out_channels=in_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
)
)
self.resnets = nn.ModuleList(resnets)
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
return hidden_states
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
class UNet3DModel(nn.Module):
def __init__(
self,
in_channels: int = 4,
out_channels: int = 4,
use_conv_out: bool=True,
down_block_types: Tuple[str, ...] = (
"DownBlock3D",
"DownBlock3D",
"DownBlock3D",
"DownBlock3D",
),
up_block_types: Tuple[str, ...] = (
"UpBlock3D",
"UpBlock3D",
"UpBlock3D",
"UpBlock3D",
),
block_out_channels: Tuple[int, ...] = (4, 16, 64,256),
layers_per_block: int = 4,
layers_mid_block: int=4,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: Optional[int] = 4,
norm_eps: float = 1e-5,
use_checkpoint: bool = True,
):
super().__init__()
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
conv_in_kernel = 3
conv_out_kernel = 3
conv_in_padding = (conv_in_kernel - 1) // 2
self.conv_in = nn.Conv3d(
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
)
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
downsample_padding=downsample_padding,
)
self.down_blocks.append(down_block)
self.mid_block = UNetMidBlock3D(
in_channels=block_out_channels[-1],
num_layers=layers_mid_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_groups=norm_num_groups,
)
self.num_upsamplers = 0
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
if norm_num_groups is not None:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
self.conv_act = get_activation("silu")
else:
self.conv_norm_out = None
self.conv_act = None
conv_out_padding = (conv_out_kernel - 1) // 2
if use_conv_out:
self.conv_out = nn.Conv3d(
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
)
else:
self.conv_out = None
self.use_checkpoint = use_checkpoint
def forward(
self,
sample: torch.Tensor,
) :
default_overall_up_factor = 2**self.num_upsamplers
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
forward_upsample_size = True
sample = self.conv_in(sample)
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if self.use_checkpoint:
sample, res_samples = torch.utils.checkpoint.checkpoint(downsample_block, sample, use_reentrant=False)
else:
sample, res_samples = downsample_block(hidden_states=sample)
down_block_res_samples += res_samples
if self.mid_block is not None:
if self.use_checkpoint:
sample = torch.utils.checkpoint.checkpoint(self.mid_block, sample, use_reentrant=False)
else:
sample = self.mid_block(sample)
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if self.use_checkpoint:
sample = torch.utils.checkpoint.checkpoint(upsample_block, (sample, res_samples, upsample_size), use_reentrant=False)
else:
sample = upsample_block(
hidden_states=sample,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
)
if self.conv_norm_out:
dtype = sample.dtype
sample = self.conv_norm_out(sample.float()).to(dtype)
sample = self.conv_act(sample)
if self.conv_out!=None:
sample = self.conv_out(sample)
return F.tanh(sample)*2
else:
return sample