Spaces:
Runtime error
Runtime error
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
ACTIVATION_FUNCTIONS = { | |
"swish": nn.SiLU(), | |
"silu": nn.SiLU(), | |
"mish": nn.Mish(), | |
"gelu": nn.GELU(), | |
"relu": nn.ReLU(), | |
} | |
def get_activation(act_fn: str) -> nn.Module: | |
act_fn = act_fn.lower() | |
if act_fn in ACTIVATION_FUNCTIONS: | |
return ACTIVATION_FUNCTIONS[act_fn] | |
else: | |
raise ValueError(f"Unsupported activation function: {act_fn}") | |
def get_down_block( | |
down_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
add_downsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
resnet_groups: Optional[int] = None, | |
downsample_padding: Optional[int] = None, | |
dropout: float = 0.0, | |
) -> Union[ | |
"DownBlock3D", | |
]: | |
if down_block_type == "DownBlock3D": | |
return DownBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
dropout=dropout, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
add_upsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
resnet_groups: Optional[int] = None, | |
dropout: float = 0.0, | |
) -> Union[ | |
"UpBlock3D", | |
]: | |
if up_block_type == "UpBlock3D": | |
return UpBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
dropout=dropout, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class Downsample3D(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
out_channels: Optional[int] = None, | |
kernel_size=2, | |
bias=True, | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
stride = 2 | |
self.conv = nn.Conv3d( | |
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias | |
) | |
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
assert hidden_states.shape[1] == self.channels | |
assert hidden_states.shape[1] == self.channels | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class Upsample3D(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
use_conv: bool = False, | |
use_conv_transpose: bool = True, | |
out_channels: Optional[int] = None, | |
name: str = "conv", | |
kernel_size: Optional[int] = None, | |
padding=1, | |
bias=True, | |
interpolate=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
self.interpolate = interpolate | |
conv = None | |
if use_conv_transpose: | |
conv = nn.ConvTranspose3d( | |
channels, self.out_channels, kernel_size=2, stride=2, padding=0, bias=bias | |
) | |
elif use_conv: | |
if kernel_size is None: | |
kernel_size = 3 | |
conv = nn.Conv3d(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias) | |
if name == "conv": | |
self.conv = conv | |
else: | |
self.Conv2d_0 = conv | |
def forward(self, hidden_states: torch.Tensor, output_size: Optional[int] = None) -> torch.Tensor: | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv_transpose: | |
return self.conv(hidden_states) | |
if hidden_states.shape[0] >= 64 or hidden_states.shape[-1] >= 64: | |
hidden_states = hidden_states.contiguous() | |
if self.interpolate: | |
if output_size is None: | |
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") | |
else: | |
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
if self.use_conv: | |
if self.name == "conv": | |
hidden_states = self.conv(hidden_states) | |
else: | |
hidden_states = self.Conv2d_0(hidden_states) | |
return hidden_states | |
class ResnetBlock3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
conv_shortcut: bool = False, | |
dropout: float = 0.0, | |
groups: int = 32, | |
groups_out: Optional[int] = None, | |
eps: float = 1e-6, | |
non_linearity: str = "swish", | |
output_scale_factor: float = 1.0, | |
use_in_shortcut: Optional[bool] = None, | |
up: bool = False, | |
down: bool = False, | |
conv_shortcut_bias: bool = True, | |
conv_2d_out_channels: Optional[int] = None, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.up = up | |
self.down = down | |
self.output_scale_factor = output_scale_factor | |
if groups_out is None: | |
groups_out = groups | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
conv_2d_out_channels = conv_2d_out_channels or out_channels | |
self.conv2 = nn.Conv3d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) | |
self.nonlinearity = get_activation(non_linearity) | |
self.upsample = self.downsample = None | |
if self.up: | |
self.upsample = Upsample3D(in_channels, use_conv=False) | |
elif self.down: | |
self.downsample = Downsample3D(in_channels) | |
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = nn.Conv3d( | |
in_channels, | |
conv_2d_out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=conv_shortcut_bias, | |
) | |
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = input_tensor | |
dtype = hidden_states.dtype | |
hidden_states = self.norm1(hidden_states.float()).to(dtype) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.norm2(hidden_states.float()).to(dtype) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
class DownBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample3D( | |
out_channels, | |
out_channels=out_channels | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]: | |
output_states = () | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class UpBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock3D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
res_hidden_states_tuple: Tuple[torch.Tensor, ...], | |
upsample_size: Optional[int] = None, | |
) -> torch.Tensor: | |
for resnet in self.resnets: | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
class UNetMidBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 2, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
output_scale_factor: float = 1.0, | |
use_linear_projection: bool = True, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
resnets = [ | |
ResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
) | |
] | |
for _ in range(num_layers): | |
resnets.append( | |
ResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
) -> torch.Tensor: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states) | |
return hidden_states | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
class UNet3DModel(nn.Module): | |
def __init__( | |
self, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
use_conv_out: bool=True, | |
down_block_types: Tuple[str, ...] = ( | |
"DownBlock3D", | |
"DownBlock3D", | |
"DownBlock3D", | |
"DownBlock3D", | |
), | |
up_block_types: Tuple[str, ...] = ( | |
"UpBlock3D", | |
"UpBlock3D", | |
"UpBlock3D", | |
"UpBlock3D", | |
), | |
block_out_channels: Tuple[int, ...] = (4, 16, 64,256), | |
layers_per_block: int = 4, | |
layers_mid_block: int=4, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 4, | |
norm_eps: float = 1e-5, | |
use_checkpoint: bool = True, | |
): | |
super().__init__() | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
conv_in_kernel = 3 | |
conv_out_kernel = 3 | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.conv_in = nn.Conv3d( | |
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
) | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
downsample_padding=downsample_padding, | |
) | |
self.down_blocks.append(down_block) | |
self.mid_block = UNetMidBlock3D( | |
in_channels=block_out_channels[-1], | |
num_layers=layers_mid_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_groups=norm_num_groups, | |
) | |
self.num_upsamplers = 0 | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
if norm_num_groups is not None: | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
self.conv_act = get_activation("silu") | |
else: | |
self.conv_norm_out = None | |
self.conv_act = None | |
conv_out_padding = (conv_out_kernel - 1) // 2 | |
if use_conv_out: | |
self.conv_out = nn.Conv3d( | |
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding | |
) | |
else: | |
self.conv_out = None | |
self.use_checkpoint = use_checkpoint | |
def forward( | |
self, | |
sample: torch.Tensor, | |
) : | |
default_overall_up_factor = 2**self.num_upsamplers | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
forward_upsample_size = True | |
sample = self.conv_in(sample) | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if self.use_checkpoint: | |
sample, res_samples = torch.utils.checkpoint.checkpoint(downsample_block, sample, use_reentrant=False) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample) | |
down_block_res_samples += res_samples | |
if self.mid_block is not None: | |
if self.use_checkpoint: | |
sample = torch.utils.checkpoint.checkpoint(self.mid_block, sample, use_reentrant=False) | |
else: | |
sample = self.mid_block(sample) | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if self.use_checkpoint: | |
sample = torch.utils.checkpoint.checkpoint(upsample_block, (sample, res_samples, upsample_size), use_reentrant=False) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
res_hidden_states_tuple=res_samples, | |
upsample_size=upsample_size, | |
) | |
if self.conv_norm_out: | |
dtype = sample.dtype | |
sample = self.conv_norm_out(sample.float()).to(dtype) | |
sample = self.conv_act(sample) | |
if self.conv_out!=None: | |
sample = self.conv_out(sample) | |
return F.tanh(sample)*2 | |
else: | |
return sample | |