Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import glob | |
import math | |
from functools import partial | |
import torch | |
import ipywidgets as widgets | |
import io | |
from PIL import Image | |
from torchvision import transforms | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
from torch import nn | |
from thop import profile | |
is_flop_cal = False | |
import warnings | |
warnings.filterwarnings("ignore") | |
# Step 2: Creating a Vision Transformer | |
# normalise the torch | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
#用于执行无梯度截断正态分布初始化。这两个函数在模型初始化中使用,确保权重被适当地初始化。 | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
def norm_cdf(x): | |
# computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
#对输入进行随机丢弃一部分元素,实现随机深度(Stochastic Depth)。 | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
# work with diff dim tensors, not just 2D ConvNets | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) | |
random_tensor = keep_prob + \ | |
torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
#用于在残差块的主路径上应用 drop_path 函数。 | |
class DropPath(nn.Module): | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
#一个多层感知机(MLP)类,包含两个线性层和一个激活函数,用于在残差块中对特征进行非线性映射。 | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
# 自注意力机制类,用于在残差块中计算注意力权重并应用它们。 | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // | |
self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x, attn | |
# 一个残差块类,包含一个自注意力模块和一个MLP模块。 | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, drop=drop) | |
def forward(self, x, return_attention=False): | |
y, attn = self.attn(self.norm1(x)) | |
if return_attention: | |
return attn | |
x = x + self.drop_path(y) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
# 图像到块嵌入类,将输入图像分割成块并将它们映射到嵌入空间 | |
class PatchEmbed(nn.Module): | |
""" | |
Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
num_patches = (img_size // patch_size) * (img_size // patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, | |
kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
# Vision Transformer模型的主要实现。包含多个残差块、嵌入层等。(还需要学里面每一步代码具体在做什么) | |
class VisionTransformer(nn.Module): | |
""" | |
Vision Transformer | |
""" | |
def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs): | |
super().__init__() | |
self.num_features = self.embed_dim = embed_dim | |
self.patch_embed = PatchEmbed( | |
img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth decay rule | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# classifier head | |
self.head = nn.Linear( | |
embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def interpolate_pos_encoding(self, x, w, h): | |
npatch = x.shape[1] - 1 | |
N = self.pos_embed.shape[1] - 1 | |
if npatch == N and w == h: | |
return self.pos_embed | |
class_pos_embed = self.pos_embed[:, 0] | |
patch_pos_embed = self.pos_embed[:, 1:] | |
dim = x.shape[-1] | |
w0 = w // self.patch_embed.patch_size | |
h0 = h // self.patch_embed.patch_size | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
w0, h0 = w0 + 0.1, h0 + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, int(math.sqrt(N)), int( | |
math.sqrt(N)), dim).permute(0, 3, 1, 2), | |
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), | |
mode='bicubic', | |
) | |
assert int( | |
w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
def prepare_tokens(self, x): | |
B, nc, w, h = x.shape | |
x = self.patch_embed(x) # patch linear embedding | |
# add the [CLS] token to the embed patch tokens | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
# add positional encoding to each token | |
x = x + self.interpolate_pos_encoding(x, w, h) | |
return self.pos_drop(x) | |
def forward(self, x): | |
x = self.prepare_tokens(x) | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
return x[:, 0], x[:, 1:] # return CLS token and attention_features maps | |
def get_last_selfattention(self, x): | |
x = self.prepare_tokens(x) | |
for i, blk in enumerate(self.blocks): | |
if i < len(self.blocks) - 1: | |
x = blk(x) | |
else: | |
# return attention of the last block | |
# print(f"return attention of the last block: {x.shape}") | |
# print(blk(x, return_attention=True).shape) | |
return blk(x, return_attention=True) | |
def get_intermediate_layers(self, x, n=1): | |
x = self.prepare_tokens(x) | |
output = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if len(self.blocks) - i <= n: | |
output.append(self.norm(x)) | |
return output | |
# Vision Transformer 模型的生成器类,用于实例化和配置特定模型。 | |
class VitGenerator(object): | |
def __init__(self, name_model, patch_size, device, evaluate=True, random=False, verbose=False): | |
self.name_model = name_model | |
self.patch_size = patch_size | |
self.evaluate = evaluate | |
self.device = device | |
self.verbose = verbose | |
self.model = self._getModel() | |
self._initializeModel() | |
if not random: | |
self._loadPretrainedWeights() | |
def _getModel(self): | |
if self.verbose: | |
pass | |
# print((f"[INFO] Initializing {self.name_model} with patch size of {self.patch_size}")) | |
if self.name_model == 'vit_tiny': | |
model = VisionTransformer(patch_size=self.patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) | |
elif self.name_model == 'vit_small': | |
model = VisionTransformer(patch_size=self.patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) | |
elif self.name_model == 'vit_base': | |
model = VisionTransformer(patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) | |
else: | |
raise f"No model found with {self.name_model}" | |
return model | |
def _initializeModel(self): | |
if self.evaluate: | |
for p in self.model.parameters(): | |
p.requires_grad = False | |
self.model.eval() | |
self.model.to(self.device) | |
def _loadPretrainedWeights(self): | |
if self.verbose: | |
pass | |
# print(("[INFO] Loading weights")) | |
url = None | |
if self.name_model == 'vit_small' and self.patch_size == 16: | |
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth" | |
elif self.name_model == 'vit_small' and self.patch_size == 8: | |
url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth" | |
elif self.name_model == 'vit_base' and self.patch_size == 16: | |
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth" | |
elif self.name_model == 'vit_base' and self.patch_size == 8: | |
url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth" | |
if url is None: | |
pass | |
# print((f"Since no pretrained weights have been found with name {self.name_model} and patch size {self.patch_size}, random weights will be used")) | |
else: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/" + url) | |
self.model.load_state_dict(state_dict, strict=True) | |
# print(url) | |
def get_last_selfattention(self, img): | |
return self.model.get_last_selfattention(img.to(self.device)) | |
def __call__(self, x): | |
return self.model(x) | |
# Step 3: Creating Visualization Functions | |
def transform(img, img_size): | |
img = transforms.Resize(img_size)(img) | |
img = transforms.ToTensor()(img) | |
return img | |
def visualize_predict(model, img_tensor, patch_size, device, video_name, frame_number, fig_name, combined_name): | |
if img_tensor.dim() == 3: | |
img_tensor = img_tensor.unsqueeze(0) | |
attention = visualize_attention(model, img_tensor, patch_size, device) | |
# save activation maps as png | |
# png_path = f'../visualisation/resnet50/{video_name}/frame_{frame_number}/' | |
# os.makedirs(png_path, exist_ok=True) | |
# get_activation_png(img, png_path, fig_name, attention) | |
# save activation features as npy | |
activations_dict, frame_npy_path = get_activation_npy(video_name, frame_number, fig_name, combined_name, attention) | |
return activations_dict, frame_npy_path | |
def visualize_attention(model, img_tensor, patch_size, device): | |
# img_tensor: format [1, C, H, W] | |
# Adjust the image dimensions to be divisible by the patch size | |
w, h = img_tensor.shape[2] - img_tensor.shape[2] % patch_size, img_tensor.shape[3] - img_tensor.shape[3] % patch_size | |
img_tensor = img_tensor[:, :, :w, :h] | |
w_featmap = img_tensor.shape[-2] // patch_size | |
h_featmap = img_tensor.shape[-1] // patch_size | |
attentions = model.get_last_selfattention(img_tensor.to(device)) | |
nh = attentions.shape[1] # number of heads | |
# keep only the output patch attention | |
attentions = attentions[0, :, 0, 1:].reshape(nh, -1) | |
attentions = attentions.reshape(nh, w_featmap, h_featmap) | |
attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu().numpy() | |
return attentions | |
def get_activation_png(img, png_path, fig_name, attention): | |
n_heads = attention.shape[0] | |
# attention maps | |
for i in range(n_heads): | |
plt.imshow(attention[i], cmap='viridis') #cmap='viridis', cmap='inferno' | |
plt.title(f"Head n: {i + 1}") | |
plt.axis('off') # Turn off axis ticks and labels | |
# Save figures | |
fig_path = f'{png_path}{fig_name}_head_{i + 1}.png' | |
print(fig_path) | |
plt.savefig(fig_path) | |
plt.close() | |
# head mean map | |
plt.figure(figsize=(10, 10)) | |
image_name = fig_name.replace('vit_feature_map_', '') | |
text = [f"{image_name}", "Head Mean"] | |
for i, fig in enumerate([img, np.mean(attention, 0)]): | |
plt.subplot(1, 2, i+1) | |
plt.imshow(fig, cmap='viridis') | |
plt.title(text[i]) | |
plt.axis('off') # Turn off axis ticks and labels | |
fig_path1 = f'{png_path}{fig_name}_head_mean.png' | |
print(fig_path1) | |
print("----------------" + '\n') | |
plt.savefig(fig_path1) | |
plt.close() | |
# combine | |
# plt.figure(figsize=(20, 20)) | |
# for i in range(n_heads): | |
# plt.subplot(n_heads//3, 3, i+1) | |
# plt.imshow(attention[i], cmap='inferno') | |
# plt.title(f"Head n: {i+1}") | |
# plt.tight_layout() | |
# fig_path2 = png_path + fig_name + '_heads.png' | |
# print(fig_path2 + '\n') | |
# plt.savefig(fig_path2) | |
# plt.close() | |
def get_activation_npy(video_name, frame_number, fig_name, combined_name, attention): | |
# save activation features as pny | |
# npy_path = f'../features/vit/{video_name}/frame_{frame_number}/' | |
# os.makedirs(npy_path, exist_ok=True) | |
mean_attention = attention.mean(axis=0) | |
frame_npy_path = f'../features/vit/{video_name}/frame_{frame_number}_{combined_name}.npy' | |
return mean_attention, frame_npy_path | |
class Loader(object): | |
def __init__(self): | |
self.uploader = widgets.FileUpload(accept='image/*', multiple=False) | |
self._start() | |
def _start(self): | |
display(self.uploader) | |
def getLastImage(self): | |
try: | |
for uploaded_filename in self.uploader.value: | |
uploaded_filename = uploaded_filename | |
img = Image.open(io.BytesIO( | |
bytes(self.uploader.value[uploaded_filename]['content']))) | |
return img | |
except: | |
return None | |
def saveImage(self, path): | |
with open(path, 'wb') as output_file: | |
for uploaded_filename in self.uploader.value: | |
content = self.uploader.value[uploaded_filename]['content'] | |
output_file.write(content) | |
def process_video_frame(video_name, frame, frame_number, model, patch_size, device): | |
# resize image | |
if frame.dim() == 3: | |
frame = frame.unsqueeze(0) | |
if frame.shape[2:] != (224, 224): | |
frame_tensor = torch.nn.functional.interpolate(frame, size=(224, 224), mode='bicubic', align_corners=False) | |
else: | |
frame_tensor = frame | |
# Calculate FLOPs and Params | |
if is_flop_cal == True: | |
total_flops, total_params = profile(model.model, inputs=(frame_tensor,), verbose=False) | |
print(f"total FLOPs for ViT layerstack: {total_flops}, Params: {total_params}") | |
else: | |
total_flops, total_params = None, None | |
fig_name = f"vit_feature_map" | |
combined_name = f"vit_feature_map" | |
# activations_dict, frame_npy_path = visualize_predict(model, frame_tensor, patch_size, device, video_name, frame_number, fig_name, combined_name) | |
attention_features, frame_feature_npy_path = extract_features(model, frame_tensor, video_name, frame_number, combined_name) | |
return attention_features, frame_feature_npy_path, total_flops, total_params | |
def extract_features(model, img_tensor, video_name, frame_number, combined_name): | |
if img_tensor.dim() == 3: | |
img_tensor = img_tensor.unsqueeze(0) | |
cls_token, attention_features = model(img_tensor) | |
attention_features = attention_features.squeeze(0) | |
frame_feature_npy_path = f'../features/vit/{video_name}/frame_attention_{frame_number}_{combined_name}.npy' | |
return attention_features, frame_feature_npy_path | |
if __name__ == '__main__': | |
# Step 4: Visualizing Images | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
if device.type == "cuda": | |
torch.cuda.set_device(0) | |
name_model = 'vit_base' | |
patch_size = 16 | |
model = VitGenerator(name_model, patch_size, | |
device, evaluate=True, random=False, verbose=True) | |
video_type = 'test' | |
# Test | |
if video_type == 'test': | |
metadata_path = "../../metadata/test_videos.csv" | |
# NR: | |
elif video_type == 'resolution_ugc': | |
resolution = '360P' | |
metadata_path = f"../../metadata/YOUTUBE_UGC_{resolution}_metadata.csv" | |
else: | |
metadata_path = f'../../metadata/{video_type.upper()}_metadata.csv' | |
ugcdata = pd.read_csv(metadata_path) | |
for i in range(len(ugcdata)): | |
video_name = ugcdata['vid'][i] | |
sampled_frame_path = os.path.join('../..', 'video_sampled_frame', 'sampled_frame', f'{video_name}') | |
print(f"Processing video: {video_name}") | |
image_paths = glob.glob(os.path.join(sampled_frame_path, f'{video_name}_*.png')) | |
frame_number = 0 | |
for image in image_paths: | |
print(f"{image}") | |
frame_number += 1 | |
process_video_frame(video_name, image, frame_number, model, patch_size, device) | |