flux-ds / app.py
xun's picture
Create app.py
a04ed0b verified
import numpy as np
import math
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass, field
from enum import Enum
import warnings
import json
import os
from openai import OpenAI
import time
import gradio as gr
warnings.filterwarnings("ignore")
class RiskProfile(Enum):
CONSERVATIVE = "conservative"
BALANCED = "balanced"
AGGRESSIVE = "aggressive"
class ProblemType(Enum):
STATIC = "static"
DYNAMIC = "dynamic"
class ComplexityLevel(Enum):
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
@dataclass
class DecisionOption:
name: str
attributes: Dict[str, float]
constraints: Dict[str, Any] = field(default_factory=dict)
@dataclass
class DecisionContext:
description: str
user_profile: Dict[str, Any]
options: List[DecisionOption]
objectives: List[str]
constraints: List[str]
@dataclass
class DecisionFactors:
primary_factors: List[Dict[str, Any]]
weights: Dict[str, float]
risk_profile: RiskProfile
evaluation_criteria: List[str]
@dataclass
class ProblemAnalysis:
problem_type: ProblemType
complexity_level: ComplexityLevel
recommended_iterations: int
early_stop_threshold: float
explanation: str
class LLMExtractor:
def __init__(self):
self.client = OpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
base_url=os.getenv("OPENAI_API_BASE"),
)
def _call_llm(self, prompt: str, system_prompt: str = None) -> str:
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
try:
response = self.client.chat.completions.create(
model=os.getenv("OPENAI_API_MODEL"),
messages=messages,
temperature=0.1,
max_tokens=1500,
response_format={"type": "json_object"},
)
return response.choices[0].message.content.replace("```json", "").replace("```", "")
except Exception as e:
print(f"LLM调用失败: {e}")
raise
def analyze_problem_type(self, user_input: str) -> ProblemAnalysis:
"""分析问题类型和复杂度"""
system_prompt = """你是一个决策分析专家。请分析用户的决策问题,判断:
1. 问题类型:静态决策(选项固定,结果确定)还是动态博弈(涉及多轮决策、对手策略、环境变化)
2. 复杂度:低(简单比较)、中(多因素权衡)、高(复杂约束和不确定性)
3. 推荐的MCTS迭代次数和早停阈值
请以JSON格式返回结果。"""
prompt = f"""请分析以下决策问题:
{user_input}
返回格式,请使用 JSON 格式返回,不要进行解释说明:
{{
"problem_type": "static/dynamic",
"complexity_level": "low/medium/high",
"recommended_iterations": 数值,
"early_stop_threshold": 数值,
"explanation": "分析说明"
}}
判断标准:
- 静态决策:选择学校、购买产品、投资组合等固定选项比较
- 动态博弈:游戏策略、谈判、竞争对手分析等涉及多轮交互
- 低复杂度:2-3个选项,1-3个主要因素
- 中复杂度:3-5个选项,3-6个因素
- 高复杂度:5+个选项,6+个因素或复杂约束"""
response = self._call_llm(prompt, system_prompt)
try:
data = json.loads(response)
return ProblemAnalysis(
problem_type=(ProblemType.STATIC if data["problem_type"] == "static" else ProblemType.DYNAMIC),
complexity_level=ComplexityLevel(data["complexity_level"]),
recommended_iterations=data["recommended_iterations"],
early_stop_threshold=data["early_stop_threshold"],
explanation=data["explanation"],
)
except Exception as e:
print(f"解析问题分析失败,使用默认设置: {e}")
return ProblemAnalysis(
problem_type=ProblemType.STATIC,
complexity_level=ComplexityLevel.MEDIUM,
recommended_iterations=1000,
early_stop_threshold=0.01,
explanation="使用默认分析结果",
)
def extract_decision_factors(self, user_input: str) -> DecisionContext:
system_prompt = """你是一个决策分析专家。请分析用户的决策需求,提取以下信息:
1. 决策选项(options):每个选项的名称和关键属性,只返回必须满足约束条件的决策选项(比如用户拥有的分数、积分、点数、数额必须大于对方拥有或要求数额)
2. 决策目标(objectives):用户想要优化的目标
3. 约束条件(constraints):必须满足的限制条件
4. 用户特征(user_profile):风险偏好、预算、偏好等
请以JSON格式返回结果。"""
prompt = f"""请分析以下决策需求:
{user_input}
返回格式示例,请使用 JSON 格式返回,不要进行解释说明:
{{
"description": "决策描述",
"options": [
{{
"name": "选项名称",
"attributes": {{
"属性1": 数值,
"属性2": 数值
}}
}}
],
"objectives": ["目标1", "目标2"],
"constraints": ["约束1", "约束2"],
"user_profile": {{
"risk_preference": "conservative/balanced/aggressive",
"其他特征": "值"
}}
}}"""
response = self._call_llm(prompt, system_prompt)
try:
data = json.loads(response)
options = [
DecisionOption(
name=opt["name"],
attributes=opt["attributes"],
constraints=opt.get("constraints", {}),
)
for opt in data["options"]
]
return DecisionContext(
description=data["description"],
user_profile=data["user_profile"],
options=options,
objectives=data["objectives"],
constraints=data["constraints"],
)
except Exception as e:
print(f"解析LLM响应失败: {e}")
raise
def extract_evaluation_strategy(self, context: DecisionContext) -> DecisionFactors:
system_prompt = """你是一个决策策略专家。基于决策上下文,设计评估策略:
1. 识别主要决策因子及其重要性
2. 根据用户风险偏好分配权重
3. 定义评估标准
4. 只考虑用户决策描述涉及的决策因子,不要添加额外因子"""
prompt = f"""基于以下决策上下文设计评估策略:
决策描述:{context.description}
目标:{', '.join(context.objectives)}
约束:{', '.join(context.constraints)}
用户特征:{json.dumps(context.user_profile, ensure_ascii=False)}
请返回JSON格式的评估策略,不要进行解释说明:
{{
"primary_factors": [
{{
"name": "因子名称",
"type": "quantitative/qualitative",
"importance": "high/medium/low",
"uncertainty_level": 0.1
}}
],
"weights": {{
"因子1": 权重,
"因子2": 权重
}},
"evaluation_criteria": ["标准1", "标准2"],
"risk_adjustment": {{
"method": "utility_function",
"parameter": 0.5
}}
}}"""
response = self._call_llm(prompt, system_prompt)
try:
data = json.loads(response)
risk_pref = context.user_profile.get("risk_preference", "balanced").lower()
risk_profile = RiskProfile.CONSERVATIVE
if risk_pref == "balanced":
risk_profile = RiskProfile.BALANCED
elif risk_pref == "aggressive":
risk_profile = RiskProfile.AGGRESSIVE
return DecisionFactors(
primary_factors=data["primary_factors"],
weights=data["weights"],
risk_profile=risk_profile,
evaluation_criteria=data["evaluation_criteria"],
)
except Exception as e:
print(f"解析评估策略失败: {e}")
raise
def batch_evaluate_options(
self, context: DecisionContext, decision_factors: DecisionFactors
) -> Dict[str, Tuple[float, Dict[str, float]]]:
options_data = []
for opt in context.options:
options_data.append({"name": opt.name, "attributes": opt.attributes})
evaluation_prompt = f"""批量评估以下所有选项:
选项列表:{json.dumps(options_data, ensure_ascii=False)}
目标:{', '.join(context.objectives)}
约束:{', '.join(context.constraints)}
评估标准:{', '.join(decision_factors.evaluation_criteria)}
权重:{json.dumps(decision_factors.weights, ensure_ascii=False)}
请为每个选项的每个评估维度打分(0-1),并计算加权综合分,请使用 JSON 格式返回,不要进行解释说明:
{{
"evaluations": {{
"选项名称1": {{
"dimension_scores": {{
"维度1": 分数,
"维度2": 分数
}},
"weighted_score": 加权综合分
}},
"选项名称2": {{
"dimension_scores": {{
"维度1": 分数,
"维度2": 分数
}},
"weighted_score": 加权综合分
}}
}}
}}"""
try:
response = self._call_llm(evaluation_prompt)
eval_data = json.loads(response)
results = {}
for option_name, eval_result in eval_data["evaluations"].items():
weighted_score = eval_result["weighted_score"]
dimension_scores = eval_result["dimension_scores"]
results[option_name] = (weighted_score, dimension_scores)
return results
except Exception as e:
print(f"批量评估失败,使用简单评估: {e}")
return self._simple_batch_evaluate(context, decision_factors)
def _simple_batch_evaluate(
self, context: DecisionContext, decision_factors: DecisionFactors
) -> Dict[str, Tuple[float, Dict[str, float]]]:
results = {}
for option in context.options:
scores = {}
total_score = 0
for attr_name, attr_value in option.attributes.items():
normalized_score = min(1.0, attr_value / 100.0) if isinstance(attr_value, (int, float)) else 0.5
scores[attr_name] = normalized_score
weight = decision_factors.weights.get(attr_name, 1.0 / len(option.attributes))
total_score += weight * normalized_score
results[option.name] = (total_score, scores)
return results
class UtilityFunction:
def __init__(self, risk_aversion: float = 0.5):
self.risk_aversion = risk_aversion
def calculate_utility(self, value: float) -> float:
if self.risk_aversion == 0:
return value
elif self.risk_aversion > 0:
return 1 - math.exp(-self.risk_aversion * value)
else:
return value ** (1 + abs(self.risk_aversion))
class UtilityEvaluator:
def __init__(
self,
decision_factors: DecisionFactors,
pre_evaluations: Dict[str, Tuple[float, Dict[str, float]]],
):
self.decision_factors = decision_factors
self.utility_func = UtilityFunction(self._get_risk_aversion())
self.pre_evaluations = pre_evaluations
def _get_risk_aversion(self) -> float:
if self.decision_factors.risk_profile == RiskProfile.CONSERVATIVE:
return 1.0
elif self.decision_factors.risk_profile == RiskProfile.BALANCED:
return 0.5
else:
return -0.3
def evaluate_option(self, option: DecisionOption, context: DecisionContext) -> Tuple[float, Dict[str, float]]:
if option.name in self.pre_evaluations:
score, dimension_scores = self.pre_evaluations[option.name]
utility_score = self.utility_func.calculate_utility(score)
return utility_score, dimension_scores
return self._simple_evaluate(option, context)
def _simple_evaluate(self, option: DecisionOption, context: DecisionContext) -> Tuple[float, Dict[str, float]]:
scores = {}
total_score = 0
for attr_name, attr_value in option.attributes.items():
normalized_score = min(1.0, attr_value / 100.0) if isinstance(attr_value, (int, float)) else 0.5
scores[attr_name] = normalized_score
weight = self.decision_factors.weights.get(attr_name, 1.0 / len(option.attributes))
total_score += weight * normalized_score
return total_score, scores
class TraditionalEvaluator:
"""传统的加权评分方法"""
def __init__(
self,
decision_factors: DecisionFactors,
pre_evaluations: Dict[str, Tuple[float, Dict[str, float]]],
):
self.decision_factors = decision_factors
self.utility_func = UtilityFunction(self._get_risk_aversion())
self.pre_evaluations = pre_evaluations
def _get_risk_aversion(self) -> float:
if self.decision_factors.risk_profile == RiskProfile.CONSERVATIVE:
return 1.0
elif self.decision_factors.risk_profile == RiskProfile.BALANCED:
return 0.5
else:
return -0.3
def evaluate_all_options(self, context: DecisionContext) -> Dict[str, Any]:
"""评估所有选项并返回结果"""
option_results = []
for option in context.options:
score, dimension_scores = self.evaluate_option(option, context)
result = {
"option": option.name,
"expected_value": score,
"dimension_scores": dimension_scores,
"recommendation_score": score,
}
option_results.append(result)
# 按分数排序
option_results.sort(key=lambda x: x["recommendation_score"], reverse=True)
return {
"recommendations": option_results[:3],
"best_choice": option_results[0] if option_results else None,
"all_results": option_results,
"analysis": {
"method": "traditional_weighted_scoring",
"dimension_leaders": self._get_dimension_leaders(option_results),
},
# 添加决策因子信息
"decision_factors": {
"weights": self.decision_factors.weights,
"risk_profile": self.decision_factors.risk_profile.value,
"evaluation_criteria": self.decision_factors.evaluation_criteria,
},
}
def evaluate_option(self, option: DecisionOption, context: DecisionContext) -> Tuple[float, Dict[str, float]]:
if option.name in self.pre_evaluations:
score, dimension_scores = self.pre_evaluations[option.name]
utility_score = self.utility_func.calculate_utility(score)
return utility_score, dimension_scores
return self._simple_evaluate(option, context)
def _simple_evaluate(self, option: DecisionOption, context: DecisionContext) -> Tuple[float, Dict[str, float]]:
scores = {}
total_score = 0
for attr_name, attr_value in option.attributes.items():
normalized_score = min(1.0, attr_value / 100.0) if isinstance(attr_value, (int, float)) else 0.5
scores[attr_name] = normalized_score
weight = self.decision_factors.weights.get(attr_name, 1.0 / len(option.attributes))
total_score += weight * normalized_score
return total_score, scores
def _get_dimension_leaders(self, option_results: List[Dict]) -> Dict[str, Tuple[str, float]]:
dimension_leaders = {}
for result in option_results:
for dim, score in result.get("dimension_scores", {}).items():
if dim not in dimension_leaders or score > dimension_leaders[dim][1]:
dimension_leaders[dim] = (result["option"], score)
return dimension_leaders
class BayesianMCTSNode:
def __init__(
self,
state: Dict,
parent: Optional["BayesianMCTSNode"] = None,
action: Any = None,
context: DecisionContext = None,
):
self.state = state
self.parent = parent
self.action = action
self.context = context
self.children = []
self.alpha = 1.0
self.beta = 1.0
self.visits = 0
self.value_history = []
self.dimension_scores = {}
self.untried_actions = self._get_available_actions()
def _get_available_actions(self) -> List[str]:
if self.context and not self.state.get("is_terminal", False):
return [opt.name for opt in self.context.options]
return []
def is_terminal(self) -> bool:
return self.state.get("is_terminal", False) or self.state.get("depth", 0) >= 1
def is_fully_expanded(self) -> bool:
return len(self.untried_actions) == 0
def ucb_select_child(self, exploration_param: float = 1.414) -> Optional["BayesianMCTSNode"]:
if not self.children:
return None
total_visits = sum(child.visits for child in self.children)
if total_visits == 0:
return np.random.choice(self.children)
ucb_values = []
for child in self.children:
if child.visits == 0:
ucb_values.append(float("inf"))
else:
exploitation = child.get_posterior_mean()
exploration = exploration_param * math.sqrt(math.log(total_visits) / child.visits)
ucb_values.append(exploitation + exploration)
return self.children[np.argmax(ucb_values)]
def thompson_sampling_select(self) -> Optional["BayesianMCTSNode"]:
if not self.children:
return None
samples = [np.random.beta(child.alpha, child.beta) for child in self.children]
return self.children[np.argmax(samples)]
def get_posterior_mean(self) -> float:
return self.alpha / (self.alpha + self.beta)
def get_posterior_variance(self) -> float:
alpha, beta = self.alpha, self.beta
return (alpha * beta) / ((alpha + beta) ** 2 * (alpha + beta + 1))
def expand(self) -> "BayesianMCTSNode":
if not self.untried_actions:
return self
action = self.untried_actions.pop()
next_state = self._apply_action(self.state, action)
child = BayesianMCTSNode(next_state, self, action, self.context)
self.children.append(child)
return child
def _apply_action(self, state: Dict, action: str) -> Dict:
new_state = state.copy()
new_state["selected_option"] = action
new_state["depth"] = state.get("depth", 0) + 1
new_state["is_terminal"] = True
return new_state
def update(self, reward: float, dimension_scores: Dict[str, float] = None):
self.visits += 1
self.value_history.append(reward)
if dimension_scores:
for dim, score in dimension_scores.items():
if dim not in self.dimension_scores:
self.dimension_scores[dim] = []
self.dimension_scores[dim].append(score)
reward = max(0, min(1, reward))
noise_factor = max(0.01, 1.0 / (self.visits + 1))
reward += np.random.normal(0, noise_factor)
reward = max(0, min(1, reward))
update_rate = 1.0
self.alpha += reward * update_rate
self.beta += (1 - reward) * update_rate
class BayesianMCTS:
def __init__(
self,
context: DecisionContext,
decision_factors: DecisionFactors,
evaluator: UtilityEvaluator,
iterations: int = 1000,
progress_callback=None,
early_stop_threshold: float = 0.01,
min_iterations: int = 100,
selection_method: str = "mixed",
):
self.context = context
self.decision_factors = decision_factors
self.evaluator = evaluator
self.iterations = iterations
self.progress_callback = progress_callback
self.early_stop_threshold = early_stop_threshold
self.min_iterations = min_iterations
self.selection_method = selection_method
def search(self) -> Dict[str, Any]:
initial_state = {"is_terminal": False, "depth": 0}
root = BayesianMCTSNode(initial_state, context=self.context)
best_scores_history = []
for iteration in range(self.iterations):
if self.progress_callback and (iteration + 1) % 100 == 0:
progress = (iteration + 1) / self.iterations
self.progress_callback(progress, f"MCTS搜索进度: {iteration + 1}/{self.iterations}")
node = self._select(root)
if not node.is_terminal() and not node.is_fully_expanded():
node = node.expand()
reward, dimension_scores = self._simulate(node)
self._backpropagate(node, reward, dimension_scores)
if iteration >= self.min_iterations and iteration % 50 == 0:
if self._should_early_stop(root, best_scores_history):
if self.progress_callback:
self.progress_callback(1.0, f"MCTS早停触发,在第 {iteration + 1} 次迭代停止")
break
return self._get_results(root)
def _select(self, node: BayesianMCTSNode) -> BayesianMCTSNode:
while not node.is_terminal() and node.is_fully_expanded():
if self.selection_method == "ucb":
node = node.ucb_select_child()
elif self.selection_method == "thompson":
node = node.thompson_sampling_select()
else: # mixed
if np.random.random() < 0.7:
node = node.thompson_sampling_select()
else:
node = node.ucb_select_child()
if node is None:
break
return node
def _simulate(self, node: BayesianMCTSNode) -> Tuple[float, Dict[str, float]]:
if "selected_option" in node.state:
option_name = node.state["selected_option"]
option = next((opt for opt in self.context.options if opt.name == option_name), None)
if option:
base_reward, dim_scores = self.evaluator.evaluate_option(option, self.context)
noise = np.random.normal(0, 0.05)
reward = max(0, min(1, base_reward + noise))
return reward, dim_scores
random_option = np.random.choice(self.context.options)
base_reward, dim_scores = self.evaluator.evaluate_option(random_option, self.context)
noise = np.random.normal(0, 0.05)
reward = max(0, min(1, base_reward + noise))
return reward, dim_scores
def _backpropagate(self, node: BayesianMCTSNode, reward: float, dimension_scores: Dict[str, float]):
while node is not None:
node.update(reward, dimension_scores)
node = node.parent
def _should_early_stop(self, root: BayesianMCTSNode, best_scores_history: List[float]) -> bool:
if not root.children:
return False
current_best_scores = [child.get_posterior_mean() for child in root.children]
current_best_score = max(current_best_scores)
best_scores_history.append(current_best_score)
if len(best_scores_history) < 10:
return False
recent_scores = best_scores_history[-10:]
score_variance = np.var(recent_scores)
if score_variance < self.early_stop_threshold:
sorted_scores = sorted(current_best_scores, reverse=True)
if len(sorted_scores) >= 2:
score_gap = sorted_scores[0] - sorted_scores[1]
if score_gap > 0.1:
return True
return False
def _get_results(self, root: BayesianMCTSNode) -> Dict[str, Any]:
if not root.children:
return {
"recommendations": [],
"analysis": {"method": "mcts"},
"decision_context": self.context.description,
}
option_results = []
for child in root.children:
option_name = child.action
lower, upper = self._calculate_confidence_interval(child)
avg_dimension_scores = {}
for dim, scores in child.dimension_scores.items():
if scores:
avg_dimension_scores[dim] = np.mean(scores)
uncertainty = child.get_posterior_variance()
if child.visits > 1:
uncertainty = max(uncertainty, np.var(child.value_history) / child.visits)
result = {
"option": option_name,
"expected_value": child.get_posterior_mean(),
"uncertainty": uncertainty,
"visits": child.visits,
"confidence_interval": (lower, upper),
"dimension_scores": avg_dimension_scores,
"recommendation_score": child.get_posterior_mean() * (1 - 0.3 * uncertainty),
}
option_results.append(result)
option_results.sort(key=lambda x: x["recommendation_score"], reverse=True)
analysis = self._generate_analysis(option_results)
return {
"recommendations": option_results[:3],
"best_choice": option_results[0] if option_results else None,
"all_results": option_results,
"analysis": analysis,
"decision_context": self.context.description,
"decision_factors": {
"weights": self.decision_factors.weights,
"risk_profile": self.decision_factors.risk_profile.value,
"evaluation_criteria": self.decision_factors.evaluation_criteria,
},
}
def _calculate_confidence_interval(self, node: BayesianMCTSNode, confidence: float = 0.95) -> Tuple[float, float]:
if node.visits < 2:
return (0.0, 1.0)
values = node.value_history
if len(values) > 1:
mean_val = np.mean(values)
std_val = np.std(values, ddof=1)
margin = 1.96 * std_val / np.sqrt(len(values))
return (max(0, mean_val - margin), min(1, mean_val + margin))
else:
return (0.0, 1.0)
def _generate_analysis(self, option_results: List[Dict]) -> Dict[str, Any]:
if not option_results:
return {"method": "mcts"}
dimension_leaders = {}
for result in option_results:
for dim, score in result.get("dimension_scores", {}).items():
if dim not in dimension_leaders or score > dimension_leaders[dim][1]:
dimension_leaders[dim] = (result["option"], score)
best = option_results[0]
second_best = option_results[1] if len(option_results) > 1 else None
analysis = {
"method": "mcts",
"selection_strategy": self.selection_method,
"dimension_leaders": dimension_leaders,
"confidence_in_best": best["expected_value"] - (second_best["expected_value"] if second_best else 0),
"exploration_statistics": {
"total_visits": sum(r["visits"] for r in option_results),
"visit_distribution": {r["option"]: r["visits"] for r in option_results},
},
"uncertainty_analysis": {r["option"]: r["uncertainty"] for r in option_results},
}
return analysis
class IntelligentDecisionSystem:
def __init__(self):
self.llm_extractor = LLMExtractor()
self.decision_history = []
def make_decision(self, user_input: str, progress_callback=None, force_mcts: bool = False) -> Dict[str, Any]:
if progress_callback:
progress_callback(0.1, "正在分析问题类型和复杂度...")
problem_analysis = self.llm_extractor.analyze_problem_type(user_input)
if force_mcts:
problem_analysis.problem_type = ProblemType.DYNAMIC
if progress_callback:
progress_callback(0.2, f"问题类型: {problem_analysis.problem_type.value}, 复杂度: {problem_analysis.complexity_level.value}")
if progress_callback:
progress_callback(0.3, "正在分析您的决策需求...")
context = self.llm_extractor.extract_decision_factors(user_input)
if progress_callback:
progress_callback(0.4, f"识别到 {len(context.options)} 个决策选项")
if progress_callback:
progress_callback(0.5, "正在制定评估策略...")
decision_factors = self.llm_extractor.extract_evaluation_strategy(context)
if progress_callback:
progress_callback(0.6, "正在批量预评估所有选项...")
pre_evaluations = self.llm_extractor.batch_evaluate_options(context, decision_factors)
# 根据问题类型选择决策方法
if problem_analysis.problem_type == ProblemType.STATIC:
if progress_callback:
progress_callback(0.8, "使用传统加权评分方法进行决策...")
evaluator = TraditionalEvaluator(decision_factors, pre_evaluations)
results = evaluator.evaluate_all_options(context)
results["problem_analysis"] = problem_analysis
if progress_callback:
progress_callback(1.0, "决策分析完成!")
else:
if progress_callback:
progress_callback(0.7, f"使用MCTS方法进行动态决策搜索({problem_analysis.recommended_iterations}次迭代)...")
evaluator = UtilityEvaluator(decision_factors, pre_evaluations)
mcts = BayesianMCTS(
context,
decision_factors,
evaluator,
iterations=problem_analysis.recommended_iterations,
progress_callback=progress_callback,
early_stop_threshold=problem_analysis.early_stop_threshold,
selection_method="mixed",
)
results = mcts.search()
results["problem_analysis"] = problem_analysis
self._record_decision(context, results)
return self._format_decision_report(results, context)
def _record_decision(self, context: DecisionContext, results: Dict[str, Any]):
if results.get("best_choice"):
best_choice = results["best_choice"]["option"]
expected_value = results["best_choice"]["expected_value"]
decision_record = {
"context": context,
"chosen_option": best_choice,
"expected_value": expected_value,
"timestamp": time.time(),
}
self.decision_history.append(decision_record)
if len(self.decision_history) > 100:
self.decision_history.pop(0)
def _format_decision_report(self, results: Dict[str, Any], context: DecisionContext) -> Dict[str, Any]:
report = {
"decision_summary": {
"context": context.description,
"objectives": context.objectives,
"constraints": context.constraints,
},
"problem_analysis": results.get("problem_analysis"),
"recommendations": results.get("recommendations", []),
"best_choice": results.get("best_choice"),
"detailed_analysis": results.get("analysis", {}),
"decision_factors": results.get("decision_factors", {}),
"confidence_level": self._calculate_confidence_level(results),
}
return report
def _calculate_confidence_level(self, results: Dict[str, Any]) -> str:
if not results.get("recommendations"):
return "low"
best = results["recommendations"][0]
# 对于传统方法,基于分数差异计算信心
if results.get("analysis", {}).get("method") == "traditional_weighted_scoring":
if len(results["recommendations"]) > 1:
second = results["recommendations"][1]
gap = best["expected_value"] - second["expected_value"]
if gap > 0.2:
return "very_high"
elif gap > 0.15:
return "high"
elif gap > 0.1:
return "medium"
else:
return "low"
else:
return "medium"
# 对于MCTS方法,基于不确定性计算信心
uncertainty = best.get("uncertainty", 0.0)
if len(results["recommendations"]) > 1:
second = results["recommendations"][1]
gap = best["expected_value"] - second["expected_value"]
if gap > 0.2 and uncertainty < 0.05:
return "very_high"
elif gap > 0.15 and uncertainty < 0.1:
return "high"
elif gap > 0.1 and uncertainty < 0.15:
return "medium"
else:
return "low"
else:
if uncertainty < 0.05:
return "high"
elif uncertainty < 0.1:
return "medium"
else:
return "low"
def format_decision_report_for_chat(report: Dict[str, Any]) -> str:
"""将决策报告格式化为适合聊天界面显示的文本"""
output = []
output.append("# 🎯 智能决策分析报告")
output.append("=" * 60)
# 决策场景
output.append(f"\n## 📋 决策场景")
output.append(f"**描述**: {report['decision_summary']['context']}")
output.append(f"**优化目标**: {', '.join(report['decision_summary']['objectives'])}")
output.append(f"**约束条件**: {', '.join(report['decision_summary']['constraints'])}")
# 问题分析
if report.get("problem_analysis"):
analysis = report["problem_analysis"]
output.append(f"\n## 🔍 问题分析")
output.append(f"- **问题类型**: {analysis.problem_type.value}")
output.append(f"- **复杂度**: {analysis.complexity_level.value}")
output.append(f"- **分析说明**: {analysis.explanation}")
if analysis.problem_type == ProblemType.DYNAMIC:
output.append(f"- **推荐迭代次数**: {analysis.recommended_iterations}")
output.append(f"- **早停阈值**: {analysis.early_stop_threshold}")
# 决策信心
confidence_emoji = {
"very_high": "🟢",
"high": "🟡",
"medium": "🟠",
"low": "🔴"
}
confidence = report['confidence_level']
output.append(f"\n## 📊 决策信心水平: {confidence_emoji.get(confidence, '⚪')} {confidence.upper()}")
# 推荐方案
output.append(f"\n## 🏆 推荐方案排序")
for i, rec in enumerate(report["recommendations"], 1):
emoji = "🥇" if i == 1 else "🥈" if i == 2 else "🥉"
output.append(f"\n### {emoji} {i}. {rec['option']}")
output.append(f"- **综合评分**: {rec['expected_value']:.3f}")
output.append(f"- **推荐指数**: {rec['recommendation_score']:.3f}")
# MCTS特有信息
if "confidence_interval" in rec:
output.append(f"- **置信区间**: [{rec['confidence_interval'][0]:.3f}, {rec['confidence_interval'][1]:.3f}]")
if "uncertainty" in rec:
output.append(f"- **不确定性**: {rec['uncertainty']:.4f}")
if "visits" in rec:
output.append(f"- **访问次数**: {rec['visits']}")
# 维度得分
if rec["dimension_scores"]:
output.append("- **维度得分**:")
for dim, score in rec["dimension_scores"].items():
output.append(f" - {dim}: {score:.3f}")
# 各维度最佳选项
if report["detailed_analysis"].get("dimension_leaders"):
output.append(f"\n## 🎖️ 各维度最佳选项")
for dim, (option, score) in report["detailed_analysis"]["dimension_leaders"].items():
output.append(f"- **{dim}**: {option} ({score:.3f})")
# 决策因子权重
decision_factors = report.get("decision_factors", {})
if decision_factors.get("weights"):
output.append(f"\n## ⚖️ 决策因子权重")
for factor, weight in decision_factors["weights"].items():
output.append(f"- {factor}: {weight:.3f}")
# 其他信息
risk_profile = decision_factors.get("risk_profile", "未知")
output.append(f"\n## 📈 风险偏好: {risk_profile}")
analysis_method = report["detailed_analysis"].get("method", "unknown")
output.append(f"\n## 🔧 决策方法: {analysis_method.upper()}")
if analysis_method == "mcts":
selection_strategy = report["detailed_analysis"].get("selection_strategy", "mixed")
output.append(f"- **选择策略**: {selection_strategy}")
if report["detailed_analysis"].get("exploration_statistics"):
exp_stats = report["detailed_analysis"]["exploration_statistics"]
output.append(f"- **总访问次数**: {exp_stats['total_visits']}")
output.append("- **访问分布**:")
for option, visits in exp_stats["visit_distribution"].items():
output.append(f" - {option}: {visits}")
return "\n".join(output)
# Gradio界面
def create_gradio_interface():
# 初始化决策系统
decision_system = IntelligentDecisionSystem()
def process_decision(message, history, force_mcts=True):
"""处理用户决策请求"""
if not message.strip():
return history + [["请输入您的决策问题", "请描述您需要帮助的决策问题,我将为您提供智能分析和建议。"]]
# 添加用户消息到历史
history = history + [[message, None]]
try:
# 创建进度回调函数
progress_messages = []
def progress_callback(progress, status):
progress_messages.append(f"⏳ {status}")
# 更新最后一条消息显示进度
if history and history[-1][1] is None:
history[-1][1] = "\n".join(progress_messages)
return history
# 执行决策分析
report = decision_system.make_decision(
message,
progress_callback=progress_callback,
force_mcts=force_mcts
)
# 格式化报告
formatted_report = format_decision_report_for_chat(report)
# 更新最后一条消息
history[-1][1] = formatted_report
except Exception as e:
error_msg = f"❌ 分析过程中出现错误: {str(e)}\n\n请检查您的问题描述是否清晰,或稍后重试。"
history[-1][1] = error_msg
return history
# 创建Gradio界面
with gr.Blocks(
title="智能决策助手",
theme=gr.themes.Soft(),
css="""
.chat-message {
font-size: 14px;
}
"""
) as demo:
# 聊天界面
chatbot = gr.Chatbot(
label="决策分析对话",
height=600,
show_label=True,
container=True,
bubble_full_width=False
)
with gr.Row():
msg = gr.Textbox(
label="输入您的决策问题",
placeholder="请详细描述您的决策场景、可选方案和目标...",
lines=3,
max_lines=10,
show_label=True,
container=True
)
with gr.Row():
submit_btn = gr.Button("🎯 智能分析", variant="primary", size="lg")
clear_btn = gr.Button("🗑️ 清空对话", variant="stop", size="lg")
# 示例问题
gr.Markdown("### 📋 示例问题(点击快速填入)")
example_1 = gr.Button("🏫 学校选择问题", size="sm")
example_2 = gr.Button("🎮 游戏策略问题", size="sm")
example_3 = gr.Button("💼 供应商选择问题", size="sm")
# 事件绑定
def submit_message(message, history):
return process_decision(message, history), ""
def submit_with_mcts(message, history):
return process_with_mcts(message, history), ""
def clear_chat():
return []
# 绑定提交事件
submit_btn.click(
submit_message,
inputs=[msg, chatbot],
outputs=[chatbot, msg]
)
msg.submit(
submit_message,
inputs=[msg, chatbot],
outputs=[chatbot, msg]
)
clear_btn.click(
clear_chat,
outputs=[chatbot]
)
# 示例问题填入
def fill_example_1():
return """我需要为孩子选择一所小学学校。我们的积分大约是103.75分,如果是报B学校还可以再加 3.5 积分。
可选学校:
1. A学校:教学质量很好(9分),要求105分,有直升机会,无额外加积分,离家比较近
2. B学校:教学质量中等(6分),要求103分,没有直升,可以额外加3.5积分,离家比较近
3. C学校:教学质量一般(2分),要求90分,没有直升,无额外加积分,离家很远
我们比较看重教学质量,但也要把握录取概率,另外所有学校的积分有小概率在去年基础上加减 1 积分左右。"""
def fill_example_2():
return """我在玩一个策略游戏,需要选择下一步行动。当前情况:
1. 我有10金币,对手有80金币
2. 我可以选择:攻击(消耗30金币,可能获得50金币),防守(消耗10金币,减少损失),发展经济(消耗40金币,下回合+60金币),投降,平局
3. 对手可能会根据我的选择调整策略
4. 游戏还有3回合结束
我的目标是最终金币数量最多,需要考虑对手的反应。"""
def fill_example_3():
return """公司需要选择新的原材料供应商,有以下几个选项:
1. 供应商A:价格较高(单价120元),质量优秀(质量分9.2),交货及时率95%,距离较近
2. 供应商B:价格中等(单价100元),质量良好(质量分7.8),交货及时率88%,距离中等
3. 供应商C:价格便宜(单价80元),质量一般(质量分6.5),交货及时率75%,距离较远
我们的预算有限,但对质量和交货时间都有要求。年采购量预计10万件。"""
example_1.click(fill_example_1, outputs=[msg])
example_2.click(fill_example_2, outputs=[msg])
example_3.click(fill_example_3, outputs=[msg])
# 使用说明
with gr.Accordion("📖 详细使用说明", open=False):
gr.Markdown("""
## 🔧 功能说明
- **强制使用MCTS**: 无论问题类型,都使用MCTS方法进行深度分析
- 适合需要考虑更多不确定性的复杂决策
- 分析时间较长,但结果更全面
### 📊 报告内容说明
- **综合评分**: 基于所有因素的加权综合得分
- **推荐指数**: 考虑不确定性后的最终推荐分数
- **置信区间**: MCTS方法提供的结果可信度范围
- **不确定性**: 决策结果的不确定程度
- **维度得分**: 各个评估维度的详细得分
### 💡 最佳实践
1. **详细描述**: 提供尽可能详细的背景信息
2. **量化信息**: 尽量提供具体的数值和指标
3. **明确目标**: 清楚说明您的优化目标和约束条件
4. **多轮对话**: 可以基于分析结果进一步提问和讨论
""")
return demo
def main():
"""启动Gradio应用"""
demo = create_gradio_interface()
# 启动应用
demo.launch(
server_name="0.0.0.0", # 允许外部访问
server_port=7860, # 端口号
share=False, # 是否创建公共链接
debug=True, # 调试模式
show_error=True, # 显示错误信息
quiet=False # 是否静默启动
)
if __name__ == "__main__":
main()