File size: 18,488 Bytes
51c49bc
 
26f855a
 
 
 
088b9f3
26f855a
 
 
 
51c49bc
2992571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088b9f3
 
 
 
 
 
 
2992571
 
 
088b9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2992571
 
 
088b9f3
2992571
 
 
 
 
 
 
088b9f3
 
 
2992571
 
 
 
 
 
 
 
 
 
088b9f3
 
 
2992571
 
088b9f3
2992571
 
088b9f3
2992571
 
 
 
 
 
 
088b9f3
51c49bc
 
 
8405423
 
51c49bc
 
 
 
 
 
 
 
26f855a
088b9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2992571
088b9f3
 
2992571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088b9f3
 
2992571
 
 
 
 
 
088b9f3
2992571
088b9f3
 
 
 
 
26f855a
2992571
 
 
 
 
 
 
 
 
 
 
 
26f855a
 
 
 
8405423
 
 
 
 
6139662
 
 
 
8405423
 
088b9f3
 
 
 
 
 
26f855a
 
088b9f3
26f855a
 
088b9f3
26f855a
 
8405423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f855a
8405423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6139662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2032a
6139662
 
ef2032a
 
6139662
ef2032a
 
 
 
6139662
ef2032a
6139662
84b78a0
6139662
ef2032a
 
 
6139662
ef2032a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6139662
 
ef2032a
 
6139662
 
ef2032a
 
84b78a0
 
ef2032a
 
 
 
 
 
84b78a0
94589be
ef2032a
94589be
 
ef2032a
6139662
 
 
ef2032a
6139662
ef2032a
6139662
 
8405423
 
 
 
 
 
 
 
 
 
 
 
6139662
 
 
 
 
 
 
 
 
 
 
 
8405423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f855a
8405423
 
6139662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8405423
 
 
6139662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f855a
6139662
 
51c49bc
8405423
26f855a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import os
import tempfile
import logging
import shutil

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def ensure_full_permissions(path):
    """Grant full permissions to a file or directory"""
    try:
        if os.path.isdir(path):
            # Full permissions for directories (rwxrwxrwx)
            os.chmod(path, 0o777)
            # Apply to all contents recursively
            for root, dirs, files in os.walk(path):
                for d in dirs:
                    os.chmod(os.path.join(root, d), 0o777)
                for f in files:
                    os.chmod(os.path.join(root, f), 0o666)
        else:
            # Full permissions for files (rw-rw-rw-)
            os.chmod(path, 0o666)
        return True
    except Exception as e:
        logger.error(f"Error setting permissions for {path}: {e}")
        return False

def check_directory_permissions(path):
    """Check if directory exists and has correct permissions"""
    try:
        if not os.path.exists(path):
            logger.warning(f"Directory does not exist: {path}")
            return False
        
        # Set full permissions
        ensure_full_permissions(path)
        return True
    except Exception as e:
        logger.error(f"Error checking permissions for {path}: {e}")
        return False

def get_cache_dir():
    """Get a user-accessible cache directory"""
    try:
        # Try user's home directory first
        home_dir = os.path.expanduser('~')
        if not os.path.exists(home_dir):
            raise Exception(f"Home directory does not exist: {home_dir}")
            
        cache_dir = os.path.join(home_dir, '.cache', 'answer_grading_app')
        logger.info(f"Attempting to use cache directory: {cache_dir}")
        
        # Create directory with full permissions
        os.makedirs(cache_dir, mode=0o777, exist_ok=True)
        ensure_full_permissions(cache_dir)
        
        logger.info(f"Successfully created and verified cache directory: {cache_dir}")
        return cache_dir
    except Exception as e:
        logger.warning(f"Could not use home directory cache: {e}")
    
    # Try temp directory
    try:
        temp_dir = os.path.join(tempfile.gettempdir(), 'answer_grading_app')
        logger.info(f"Attempting to use temporary directory: {temp_dir}")
        
        os.makedirs(temp_dir, mode=0o777, exist_ok=True)
        ensure_full_permissions(temp_dir)
        
        logger.info(f"Using temporary directory: {temp_dir}")
        return temp_dir
    except Exception as e:
        logger.warning(f"Could not use temp directory: {e}")
    
    # Last resort: use current directory
    try:
        current_dir = os.path.join(os.getcwd(), '.cache')
        logger.info(f"Attempting to use current directory: {current_dir}")
        
        os.makedirs(current_dir, mode=0o777, exist_ok=True)
        ensure_full_permissions(current_dir)
        
        logger.info(f"Using current directory: {current_dir}")
        return current_dir
    except Exception as e:
        logger.error(f"Could not create any cache directory: {e}")
        
    # If all else fails, use a new temporary directory
    temp_dir = tempfile.mkdtemp()
    ensure_full_permissions(temp_dir)
    logger.info(f"Created temporary directory as last resort: {temp_dir}")
    return temp_dir

class ModelSingleton:
    _instance = None
    _initialized = False
    _models = {}
    _reference_counts = {}

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def __init__(self):
        if not self._initialized:
            try:
                logger.info("Initializing ModelSingleton...")
                
                # Set up cache directories
                self.cache_dir = get_cache_dir()
                logger.info(f"Using main cache directory: {self.cache_dir}")
                
                # Define and create all cache directories
                self.cache_dirs = {
                    'transformers': os.path.join(self.cache_dir, 'transformers'),
                    'huggingface': os.path.join(self.cache_dir, 'huggingface'),
                    'torch': os.path.join(self.cache_dir, 'torch'),
                    'cache': os.path.join(self.cache_dir, 'cache'),
                    'sentence_transformers': os.path.join(self.cache_dir, 'sentence_transformers'),
                    'fasttext': os.path.join(self.cache_dir, 'fasttext')
                }
                
                # Create and verify each cache directory with full permissions
                for name, path in self.cache_dirs.items():
                    try:
                        # Create directory with full permissions
                        os.makedirs(path, mode=0o777, exist_ok=True)
                        ensure_full_permissions(path)
                        logger.info(f"Successfully created {name} cache directory: {path}")
                        
                        # Create a test file to verify write permissions
                        test_file = os.path.join(path, '.write_test')
                        try:
                            with open(test_file, 'w') as f:
                                f.write('test')
                            os.chmod(test_file, 0o666)  # Full read/write for test file
                            os.remove(test_file)  # Clean up
                            logger.info(f"Verified write permissions for {name} cache directory")
                        except Exception as e:
                            logger.error(f"Failed to verify write permissions for {name} cache directory: {e}")
                            # Try to fix permissions
                            ensure_full_permissions(path)
                            
                    except Exception as e:
                        logger.error(f"Error creating {name} cache directory: {e}")
                        # Try to create in temp directory as fallback
                        temp_path = os.path.join(tempfile.gettempdir(), 'answer_grading_app', name)
                        os.makedirs(temp_path, mode=0o777, exist_ok=True)
                        ensure_full_permissions(temp_path)
                        self.cache_dirs[name] = temp_path
                        logger.info(f"Using fallback directory for {name}: {temp_path}")
                
                # Set environment variables with verified directories
                os.environ['TRANSFORMERS_CACHE'] = self.cache_dirs['transformers']
                os.environ['HF_HOME'] = self.cache_dirs['huggingface']
                os.environ['TORCH_HOME'] = self.cache_dirs['torch']
                os.environ['XDG_CACHE_HOME'] = self.cache_dirs['cache']
                os.environ['SENTENCE_TRANSFORMERS_HOME'] = self.cache_dirs['sentence_transformers']
                
                # Verify environment variables are set correctly
                for env_var, path in [
                    ('TRANSFORMERS_CACHE', 'transformers'),
                    ('HF_HOME', 'huggingface'),
                    ('TORCH_HOME', 'torch'),
                    ('XDG_CACHE_HOME', 'cache'),
                    ('SENTENCE_TRANSFORMERS_HOME', 'sentence_transformers')
                ]:
                    if os.environ.get(env_var) != self.cache_dirs[path]:
                        logger.warning(f"Environment variable {env_var} does not match expected path")
                        os.environ[env_var] = self.cache_dirs[path]
                
                # Get device
                self.device = "cuda" if torch.cuda.is_available() else "cpu"
                logger.info(f"Using device: {self.device}")

                # Initialize with None values
                self.similarity_tokenizer = None
                self.similarity_model = None
                self.flan_tokenizer = None
                self.flan_model = None
                self.trocr_processor = None
                self.trocr_model = None
                self.vit_model = None
                self.vit_processor = None
                
                # Initialize reference counts
                self._reference_counts = {
                    'similarity': 0,
                    'flan': 0,
                    'trocr': 0,
                    'vit': 0
                }
                
                self._initialized = True
                logger.info("ModelSingleton initialization completed successfully")
                
            except Exception as e:
                logger.error(f"Error during ModelSingleton initialization: {e}")
                raise

    def get_similarity_model(self):
        """Get sentence transformer model with reference counting"""
        try:
            if self.similarity_model is None:
                logger.info("Loading sentence transformer model...")
                SENTENCE_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
                self.similarity_tokenizer = AutoTokenizer.from_pretrained(
                    SENTENCE_MODEL,
                    cache_dir=os.getenv('TRANSFORMERS_CACHE')
                )
                self.similarity_model = SentenceTransformer(
                    SENTENCE_MODEL,
                    cache_folder=os.getenv('TRANSFORMERS_CACHE')
                )
                self.similarity_model.to(self.device)
                logger.info("Sentence transformer model loaded successfully")
            
            self._reference_counts['similarity'] += 1
            return self.similarity_model
        except Exception as e:
            logger.error(f"Error loading sentence transformer model: {e}")
            raise

    def get_flan_model(self):
        """Get Flan-T5 model with reference counting"""
        try:
            if self.flan_model is None:
                logger.info("Loading Flan-T5 model...")
                FLAN_MODEL = "google/flan-t5-xl"
                self.flan_tokenizer = AutoTokenizer.from_pretrained(
                    FLAN_MODEL,
                    cache_dir=os.getenv('TRANSFORMERS_CACHE')
                )
                self.flan_model = AutoModelForSeq2SeqLM.from_pretrained(
                    FLAN_MODEL,
                    cache_dir=os.getenv('TRANSFORMERS_CACHE'),
                    torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                    low_cpu_mem_usage=True
                )
                self.flan_model.to(self.device)
                logger.info("Flan-T5 model loaded successfully")
            
            self._reference_counts['flan'] += 1
            return self.flan_model
        except Exception as e:
            logger.error(f"Error loading Flan-T5 model: {e}")
            raise

    def get_trocr_model(self):
        """Get TrOCR model with reference counting"""
        try:
            if self.trocr_model is None:
                from transformers import TrOCRProcessor, VisionEncoderDecoderModel
                logger.info("Loading TrOCR model...")
                MODEL_NAME = "microsoft/trocr-large-handwritten"
                self.trocr_processor = TrOCRProcessor.from_pretrained(MODEL_NAME)
                self.trocr_model = VisionEncoderDecoderModel.from_pretrained(MODEL_NAME)
                self.trocr_model.to(self.device)
                logger.info("TrOCR model loaded successfully")
            
            self._reference_counts['trocr'] += 1
            return self.trocr_model, self.trocr_processor
        except Exception as e:
            logger.error(f"Error loading TrOCR model: {e}")
            raise

    def get_vit_model(self):
        """Get ViT model using only local files - no downloads"""
        try:
            if self.vit_model is None:
                from transformers import ViTConfig, ViTImageProcessor, ViTForImageClassification
                logger.info("Loading local ViT model from files...")
                
                # Get absolute path to model directory
                model_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
                model_path = os.path.join(model_root, 'models', 'vit-base-beans')
                logger.info(f"Using local model directory: {model_path}")
                
                # Check model directory exists
                if not os.path.exists(model_path):
                    raise FileNotFoundError(f"Local model directory not found at: {model_path}")
                
                # Get paths to required files
                model_file = os.path.join(model_path, 'model.safetensors')
                config_file = os.path.join(model_path, 'config.json')
                
                # Verify files exist
                if not os.path.exists(model_file):
                    raise FileNotFoundError(f"Local model weights file not found at: {model_file}")
                if not os.path.exists(config_file):
                    raise FileNotFoundError(f"Local model config file not found at: {config_file}")
                
                logger.info("Found all required local model files:")
                logger.info(f"- Using model weights: {model_file}")
                logger.info(f"- Using config file: {config_file}")
                
                # Load config directly from file
                logger.info("Loading model configuration from local file...")
                config = ViTConfig.from_json_file(config_file)
                
                # Create processor from local config
                logger.info("Creating image processor from local config...")
                self.vit_processor = ViTImageProcessor(
                    do_resize=True,
                    size=config.image_size,
                    do_normalize=True
                )
                
                # Load model directly from local files
                logger.info("Loading model weights from local file...")
                self.vit_model = ViTForImageClassification.from_pretrained(
                    model_path,
                    config=config,
                    local_files_only=True,
                    use_safetensors=True,
                    trust_remote_code=False,
                    from_tf=False,
                    _fast_init=True
                )
                
                logger.info(f"Moving model to {self.device}...")
                self.vit_model.to(self.device)
                self.vit_model.eval()
                logger.info("Local model loaded successfully!")
            
            self._reference_counts['vit'] += 1
            return self.vit_model, self.vit_processor
            
        except Exception as e:
            logger.error(f"Error loading local ViT model: {str(e)}")
            raise

    def release_similarity_model(self):
        """Release reference to similarity model"""
        self._reference_counts['similarity'] -= 1
        if self._reference_counts['similarity'] <= 0:
            self._cleanup_similarity_model()

    def release_flan_model(self):
        """Release reference to Flan-T5 model"""
        self._reference_counts['flan'] -= 1
        if self._reference_counts['flan'] <= 0:
            self._cleanup_flan_model()

    def release_trocr_model(self):
        """Release reference to TrOCR model"""
        self._reference_counts['trocr'] -= 1
        if self._reference_counts['trocr'] <= 0:
            self._cleanup_trocr_model()

    def release_vit_model(self):
        """Release reference to ViT model"""
        self._reference_counts['vit'] -= 1
        if self._reference_counts['vit'] <= 0:
            self._cleanup_vit_model()

    def _cleanup_similarity_model(self):
        """Clean up similarity model resources"""
        if self.similarity_model is not None:
            del self.similarity_model
            self.similarity_model = None
            self.similarity_tokenizer = None
            torch.cuda.empty_cache()
            logger.info("Similarity model resources cleaned up")

    def _cleanup_flan_model(self):
        """Clean up Flan-T5 model resources"""
        if self.flan_model is not None:
            del self.flan_model
            self.flan_model = None
            self.flan_tokenizer = None
            torch.cuda.empty_cache()
            logger.info("Flan-T5 model resources cleaned up")

    def _cleanup_trocr_model(self):
        """Clean up TrOCR model resources"""
        if self.trocr_model is not None:
            del self.trocr_model
            del self.trocr_processor
            self.trocr_model = None
            self.trocr_processor = None
            torch.cuda.empty_cache()
            logger.info("TrOCR model resources cleaned up")

    def _cleanup_vit_model(self):
        """Clean up ViT model resources"""
        if self.vit_model is not None:
            del self.vit_model
            del self.vit_processor
            self.vit_model = None
            self.vit_processor = None
            torch.cuda.empty_cache()
            logger.info("ViT model resources cleaned up")

    def cleanup(self):
        """Clean up all model resources"""
        try:
            logger.info("Starting model cleanup...")
            
            # Clean up each model type
            if self._reference_counts.get('similarity', 0) > 0:
                self._cleanup_similarity_model()
            if self._reference_counts.get('flan', 0) > 0:
                self._cleanup_flan_model()
            if self._reference_counts.get('trocr', 0) > 0:
                self._cleanup_trocr_model()
            if self._reference_counts.get('vit', 0) > 0:
                self._cleanup_vit_model()
            
            # Reset reference counts
            for model_type in self._reference_counts:
                self._reference_counts[model_type] = 0
            
            # Force CUDA cache cleanup
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            
            logger.info("Model cleanup completed successfully")
        except Exception as e:
            logger.error(f"Error during model cleanup: {e}")
            # Continue cleanup even if there's an error

# Create global instance
models = ModelSingleton()

# Add cleanup function to the global instance
def cleanup_models():
    models.cleanup()