Spaces:
Running
Running
YanBoChen
Before Run the 1st Evalation: Add Precision & MRR Chart Generator and a sample test query
a2aaea2
# Model use | |
llm model: (for comparison) with our-own version. | |
https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B | |
https://huggingface.co/m42-health/Llama3-Med42-70B | |
evaluation model: | |
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct | |
```python | |
""" | |
參閱 user_query.txt | |
""" | |
``` | |
### 評估執行流程 | |
```python | |
def run_complete_evaluation(model_name: str, test_cases: List[str]) -> Dict[str, Any]: | |
"""執行完整的六項指標評估""" | |
results = { | |
"model": model_name, | |
"metrics": {}, | |
"detailed_results": [] | |
} | |
total_latencies = [] | |
extraction_successes = [] | |
relevance_scores = [] | |
coverage_scores = [] | |
actionability_scores = [] | |
evidence_scores = [] | |
for query in test_cases: | |
# 運行模型並測量所有指標 | |
start_time = time.time() | |
# 1. 總處理時長 | |
latency_result = measure_total_latency(query) | |
total_latencies.append(latency_result['total_latency']) | |
# 2. 條件抽取成功率 | |
extraction_result = evaluate_condition_extraction([query]) | |
extraction_successes.append(extraction_result['success_rate']) | |
# 3 & 4. 檢索相關性和覆蓋率(需要實際檢索結果) | |
retrieval_results = get_retrieval_results(query) | |
relevance_result = evaluate_retrieval_relevance(retrieval_results) | |
relevance_scores.append(relevance_result['average_relevance']) | |
generated_advice = get_generated_advice(query, retrieval_results) | |
coverage_result = evaluate_retrieval_coverage(generated_advice, retrieval_results) | |
coverage_scores.append(coverage_result['coverage']) | |
# 5 & 6. LLM 評估(需要完整回應) | |
response_data = { | |
'query': query, | |
'advice': generated_advice, | |
'retrieval_results': retrieval_results | |
} | |
actionability_result = evaluate_clinical_actionability([response_data]) | |
actionability_scores.append(actionability_result[0]['overall_score']) | |
evidence_result = evaluate_clinical_evidence([response_data]) | |
evidence_scores.append(evidence_result[0]['overall_score']) | |
# 記錄詳細結果 | |
results["detailed_results"].append({ | |
"query": query, | |
"latency": latency_result, | |
"extraction": extraction_result, | |
"relevance": relevance_result, | |
"coverage": coverage_result, | |
"actionability": actionability_result[0], | |
"evidence": evidence_result[0] | |
}) | |
# 計算平均指標 | |
results["metrics"] = { | |
"average_latency": sum(total_latencies) / len(total_latencies), | |
"extraction_success_rate": sum(extraction_successes) / len(extraction_successes), | |
"average_relevance": sum(relevance_scores) / len(relevance_scores), | |
"average_coverage": sum(coverage_scores) / len(coverage_scores), | |
"average_actionability": sum(actionability_scores) / len(actionability_scores), | |
"average_evidence_score": sum(evidence_scores) / len(evidence_scores) | |
} | |
return results | |
``` | |
--- | |
## 📈 評估結果分析框架 | |
### 統計分析 | |
```python | |
def analyze_evaluation_results(results_A: Dict, results_B: Dict, results_C: Dict) -> Dict: | |
"""比較三個模型的評估結果""" | |
models = ['Med42-70B_direct', 'RAG_enhanced', 'OpenBioLLM-70B'] | |
metrics = ['latency', 'extraction_success_rate', 'relevance', 'coverage', 'actionability', 'evidence_score'] | |
comparison = {} | |
for metric in metrics: | |
comparison[metric] = { | |
models[0]: results_A['metrics'][f'average_{metric}'], | |
models[1]: results_B['metrics'][f'average_{metric}'], | |
models[2]: results_C['metrics'][f'average_{metric}'] | |
} | |
# 計算相對改進 | |
baseline = comparison[metric][models[0]] | |
rag_improvement = ((comparison[metric][models[1]] - baseline) / baseline) * 100 | |
comparison[metric]['rag_improvement_percent'] = rag_improvement | |
return comparison | |
``` | |
### 報告生成 | |
```python | |
def generate_evaluation_report(comparison_results: Dict) -> str: | |
"""生成評估報告""" | |
report = f""" | |
# OnCall.ai 系統評估報告 | |
## 評估摘要 | |
| 指標 | Med42-70B | RAG增強版 | OpenBioLLM | RAG改進% | | |
|------|-----------|-----------|------------|----------| | |
| 處理時長 | {comparison_results['latency']['Med42-70B_direct']:.2f}s | {comparison_results['latency']['RAG_enhanced']:.2f}s | {comparison_results['latency']['OpenBioLLM-70B']:.2f}s | {comparison_results['latency']['rag_improvement_percent']:+.1f}% | | |
| 條件抽取成功率 | {comparison_results['extraction_success_rate']['Med42-70B_direct']:.1%} | {comparison_results['extraction_success_rate']['RAG_enhanced']:.1%} | {comparison_results['extraction_success_rate']['OpenBioLLM-70B']:.1%} | {comparison_results['extraction_success_rate']['rag_improvement_percent']:+.1f}% | | |
| 檢索相關性 | - | {comparison_results['relevance']['RAG_enhanced']:.3f} | - | - | | |
| 檢索覆蓋率 | - | {comparison_results['coverage']['RAG_enhanced']:.1%} | - | - | | |
| 臨床可操作性 | {comparison_results['actionability']['Med42-70B_direct']:.1f}/10 | {comparison_results['actionability']['RAG_enhanced']:.1f}/10 | {comparison_results['actionability']['OpenBioLLM-70B']:.1f}/10 | {comparison_results['actionability']['rag_improvement_percent']:+.1f}% | | |
| 臨床證據評分 | {comparison_results['evidence_score']['Med42-70B_direct']:.1f}/10 | {comparison_results['evidence_score']['RAG_enhanced']:.1f}/10 | {comparison_results['evidence_score']['OpenBioLLM-70B']:.1f}/10 | {comparison_results['evidence_score']['rag_improvement_percent']:+.1f}% | | |
""" | |
return report | |
``` | |
--- | |
## 🔧 實驗執行步驟 | |
### 1. 環境準備 | |
```bash | |
# 設置 HuggingFace token(用於 Inference Providers) | |
export HF_TOKEN=your_huggingface_token | |
# 設置評估模式 | |
export ONCALL_EVAL_MODE=true | |
``` | |
### 2. 實驗執行腳本框架 | |
```python | |
# evaluation/run_evaluation.py | |
def main(): | |
"""主要評估執行函數""" | |
# 加載測試用例 | |
test_cases = MEDICAL_TEST_CASES | |
# 實驗 A: YanBo 系統評估 | |
print("🔬 開始實驗 A: YanBo 系統評估") | |
results_med42_direct = run_complete_evaluation("Med42-70B_direct", test_cases) | |
results_general_rag = run_complete_evaluation("Med42-70B_general_RAG", test_cases) | |
results_openbio = run_complete_evaluation("OpenBioLLM-70B", test_cases) | |
# 分析和報告 | |
comparison_A = analyze_evaluation_results(results_med42_direct, results_general_rag, results_openbio) | |
report_A = generate_evaluation_report(comparison_A) | |
# 保存結果 | |
save_results("evaluation/results/yanbo_evaluation.json", { | |
"comparison": comparison_A, | |
"detailed_results": [results_med42_direct, results_general_rag, results_openbio] | |
}) | |
print("✅ 實驗 A 完成,結果已保存") | |
# 實驗 B: Jeff 系統評估 | |
print("🔬 開始實驗 B: Jeff 系統評估") | |
results_med42_direct_b = run_complete_evaluation("Med42-70B_direct", test_cases) | |
results_customized_rag = run_complete_evaluation("Med42-70B_customized_RAG", test_cases) | |
results_openbio_b = run_complete_evaluation("OpenBioLLM-70B", test_cases) | |
# 分析和報告 | |
comparison_B = analyze_evaluation_results(results_med42_direct_b, results_customized_rag, results_openbio_b) | |
report_B = generate_evaluation_report(comparison_B) | |
# 保存結果 | |
save_results("evaluation/results/jeff_evaluation.json", { | |
"comparison": comparison_B, | |
"detailed_results": [results_med42_direct_b, results_customized_rag, results_openbio_b] | |
}) | |
print("✅ 實驗 B 完成,結果已保存") | |
if __name__ == "__main__": | |
main() | |
``` | |
### 3. 預期評估時間 | |
``` | |
總評估時間估算: | |
├── 每個查詢處理時間:~30秒(包含LLM評估) | |
├── 測試用例數量:7個 | |
├── 模型數量:3個 | |
└── 總時間:~10-15分鐘每個實驗 | |
``` | |
--- | |
## 📊 評估成功標準 | |
### 系統性能目標 | |
``` | |
✅ 達標條件: | |
1. 總處理時長 ≤ 30秒 | |
2. 條件抽取成功率 ≥ 80% | |
3. 檢索相關性 ≥ 0.2 | |
4. 檢索覆蓋率 ≥ 60% | |
5. 臨床可操作性 ≥ 7.0/10 | |
6. 臨床證據評分 ≥ 7.5/10 | |
🎯 RAG 系統成功標準: | |
- RAG增強版在 4-6 項指標上優於基線 Med42-70B | |
- 整體提升幅度 ≥ 10% | |
``` | |
### 比較分析重點 | |
``` | |
重點分析維度: | |
├── RAG 對處理時間的影響(可能增加延遲) | |
├── RAG 對回答質量的提升(可操作性和證據品質) | |
├── 不同 RAG 策略的效果差異(general vs customized) | |
└── 與其他醫學模型的競爭力比較 | |
``` | |
--- | |
## 🛠️ 實施建議 | |
### 分階段實施 | |
``` | |
階段1: 基礎指標實現(1-4項) | |
├── 利用現有 app.py 中的時間測量 | |
├── 擴展 user_prompt.py 的條件抽取評估 | |
├── 增強 retrieval.py 的相關性分析 | |
└── 實現 generation.py 的覆蓋率計算 | |
階段2: LLM評估實現(5-6項) | |
├── 設置 HuggingFace Inference Providers | |
├── 實現 Llama3-70B 評估客戶端 | |
├── 測試評估 prompts 的穩定性 | |
└── 建立評估結果解析邏輯 | |
階段3: 完整實驗執行 | |
├── 準備標準測試用例 | |
├── 執行 YanBo 系統評估(實驗A) | |
├── 執行 Jeff 系統評估(實驗B) | |
└── 生成比較分析報告 | |
``` | |
### 實施注意事項 | |
``` | |
⚠️ 重要提醒: | |
1. 所有評估代碼應獨立於現有系統,避免影響正常運行 | |
2. LLM 評估可能不穩定,建議多次運行取平均值 | |
3. 注意 API 費用控制,特別是 Llama3-70B 調用 | |
4. 保存詳細的中間結果,便於調試和分析 | |
5. 測試用例應涵蓋不同複雜度和醫學領域 | |
``` | |
--- | |
**評估指南完成。請根據此指南實施評估實驗。** | |
## Phase 1: Initial Assessment | |
### Step 1.1 - 分析您的說明 | |
我重新理解了您的意思! | |
### Step 1.2 - 無不清楚的需求 | |
### Step 1.3 - 確認理解(中文) | |
完全明白了!您的評估架構是: | |
## 🎯 **評估指標的測試層級** | |
### **單獨測試 Retrieval(指標 2, 3, 4)** | |
```python | |
# 只測試 RAG 系統,因為只有 RAG 系統有這些組件: | |
retrieval_only_metrics = [ | |
"條件抽取成功率", # 只有您的系統有 user_prompt.py | |
"檢索相關性", # 只有 RAG 系統有檢索結果 | |
"檢索覆蓋率" # 只有 RAG 系統有檢索→生成的映射 | |
] | |
# 測試對象: | |
- Med42-70B_general_RAG(您的系統)✅ | |
- Med42-70B_customized_RAG(Jeff系統)✅ | |
- Med42-70B_direct(無RAG)❌ 沒有檢索組件 | |
- OpenBioLLM-70B(無RAG)❌ 沒有檢索組件 | |
``` | |
### **三模型一起測試(指標 1, 5, 6)** | |
```python | |
# 所有模型都能測試的指標: | |
universal_metrics = [ | |
"總處理時長", # 所有模型都有響應時間 | |
"臨床可操作性", # Llama3-70B 評估所有模型的輸出 | |
"臨床證據評分" # Llama3-70B 評估所有模型的輸出 | |
] | |
# 測試對象: | |
- Med42-70B_direct ✅ | |
- Med42-70B_general_RAG ✅ | |
- OpenBioLLM-70B ✅ | |
``` | |
## 📊 **分層評估策略** | |
### **階段 1:RAG 系統內部評估** | |
```python | |
# 只測試有 RAG 的系統 | |
rag_systems = ["Med42-70B_general_RAG", "Med42-70B_customized_RAG"] | |
# 測試 RAG 特有指標 | |
for system in rag_systems: | |
evaluate_retrieval_metrics(system) # 指標 2, 3, 4 | |
``` | |
### **階段 2:全模型比較評估** | |
```python | |
# 測試所有三個模型 | |
all_systems = ["Med42-70B_direct", "Med42-70B_general_RAG", "OpenBioLLM-70B"] | |
# 測試通用指標 | |
for system in all_systems: | |
evaluate_universal_metrics(system) # 指標 1, 5, 6 | |
``` | |
### **階段 3:綜合分析** | |
```python | |
# 合併兩階段結果,生成完整報告 | |
combine_evaluation_results() | |
``` | |
### Step 1.4 - 無視覺修改確認 ✅ | |
此為評估策略討論,無涉及代碼修改。 | |
**您的理解完全正確!RAG 特有的指標只能在 RAG 系統內部測試,而通用指標可以跨所有模型比較。這樣的分層評估策略非常合理!** | |
--- | |
## 📊 第七個評估指標(YanBo系統特有) | |
### 7. 多層級 Fallback 效率(早期攔截率) | |
**定義:** 系統通過多層級 Fallback 機制在早期層級成功處理查詢的效率 | |
**測量位置:** `src/user_prompt.py` 的 `extract_condition_keywords` 多層級處理邏輯 | |
**計算公式:** | |
``` | |
Early_Interception_Rate = (Level1_Success + Level2_Success) / Total_Queries | |
其中: | |
- Level1_Success = 在預定義映射中直接找到條件的查詢數 | |
- Level2_Success = 通過LLM抽取成功的查詢數 | |
- Total_Queries = 測試查詢總數 | |
時間節省效果: | |
Time_Savings = (Late_Avg_Time - Early_Avg_Time) / Late_Avg_Time | |
早期攔截效率: | |
Efficiency_Score = Early_Interception_Rate × (1 + Time_Savings) | |
``` | |
**ASCII 流程圖:** | |
``` | |
多層級 Fallback 效率示意圖: | |
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ | |
│ 用戶查詢 │───▶│ Level 1 │───▶│ 直接成功 │ | |
│ "胸痛診斷" │ │ 預定義映射 │ │ 35% (快) │ | |
└─────────────┘ └─────────────┘ └─────────────┘ | |
│ | |
▼ (失敗) | |
┌─────────────┐ ┌─────────────┐ | |
│ Level 2 │───▶│ LLM抽取成功 │ | |
│ LLM 條件抽取│ │ 40% (中等) │ | |
└─────────────┘ └─────────────┘ | |
│ | |
▼ (失敗) | |
┌─────────────┐ ┌─────────────┐ | |
│ Level 3-5 │───▶│ 後備成功 │ | |
│ 後續層級 │ │ 20% (慢) │ | |
└─────────────┘ └─────────────┘ | |
│ | |
▼ (失敗) | |
┌─────────────┐ | |
│ 完全失敗 │ | |
│ 5% (錯誤) │ | |
└─────────────┘ | |
早期攔截率 = (35% + 40%) = 75% ✅ 目標 > 70% | |
``` | |
**實現框架:** | |
```python | |
# 基於 user_prompt.py 的多層級處理邏輯 | |
def evaluate_early_interception_efficiency(test_queries: List[str]) -> Dict[str, float]: | |
"""評估早期攔截率 - YanBo系統核心優勢""" | |
level1_success = 0 # Level 1: 預定義映射成功 | |
level2_success = 0 # Level 2: LLM 抽取成功 | |
later_success = 0 # Level 3-5: 後續層級成功 | |
total_failures = 0 # 完全失敗 | |
early_times = [] # 早期成功的處理時間 | |
late_times = [] # 後期成功的處理時間 | |
for query in test_queries: | |
# 追蹤每個查詢的成功層級和時間 | |
success_level, processing_time = track_query_success_level(query) | |
if success_level == 1: | |
level1_success += 1 | |
early_times.append(processing_time) | |
elif success_level == 2: | |
level2_success += 1 | |
early_times.append(processing_time) | |
elif success_level in [3, 4, 5]: | |
later_success += 1 | |
late_times.append(processing_time) | |
else: | |
total_failures += 1 | |
total_queries = len(test_queries) | |
early_success_count = level1_success + level2_success | |
# 計算時間節省效果 | |
early_avg_time = sum(early_times) / len(early_times) if early_times else 0 | |
late_avg_time = sum(late_times) / len(late_times) if late_times else 0 | |
time_savings = (late_avg_time - early_avg_time) / late_avg_time if late_avg_time > 0 else 0 | |
# 綜合效率分數 | |
early_interception_rate = early_success_count / total_queries | |
efficiency_score = early_interception_rate * (1 + time_savings) | |
return { | |
# 核心指標 | |
"early_interception_rate": early_interception_rate, # 早期攔截率 | |
"level1_success_rate": level1_success / total_queries, | |
"level2_success_rate": level2_success / total_queries, | |
# 時間效率 | |
"early_avg_time": early_avg_time, | |
"late_avg_time": late_avg_time, | |
"time_savings_rate": time_savings, | |
# 系統健康度 | |
"total_success_rate": (total_queries - total_failures) / total_queries, | |
"miss_rate": total_failures / total_queries, | |
# 綜合效率 | |
"overall_efficiency_score": efficiency_score, | |
# 詳細分布 | |
"success_distribution": { | |
"level1": level1_success, | |
"level2": level2_success, | |
"later_levels": later_success, | |
"failures": total_failures | |
} | |
} | |
def track_query_success_level(query: str) -> Tuple[int, float]: | |
""" | |
追蹤查詢在哪個層級成功並記錄時間 | |
Args: | |
query: 測試查詢 | |
Returns: | |
Tuple of (success_level, processing_time) | |
""" | |
start_time = time.time() | |
# 模擬 user_prompt.py 的層級處理邏輯 | |
try: | |
# Level 1: 檢查預定義映射 | |
if check_predefined_mapping(query): | |
processing_time = time.time() - start_time | |
return (1, processing_time) | |
# Level 2: LLM 條件抽取 | |
llm_result = llm_client.analyze_medical_query(query) | |
if llm_result.get('extracted_condition'): | |
processing_time = time.time() - start_time | |
return (2, processing_time) | |
# Level 3: 語義搜索 | |
semantic_result = semantic_search_fallback(query) | |
if semantic_result: | |
processing_time = time.time() - start_time | |
return (3, processing_time) | |
# Level 4: 醫學驗證 | |
validation_result = validate_medical_query(query) | |
if not validation_result: # 驗證通過 | |
processing_time = time.time() - start_time | |
return (4, processing_time) | |
# Level 5: 通用搜索 | |
generic_result = generic_medical_search(query) | |
if generic_result: | |
processing_time = time.time() - start_time | |
return (5, processing_time) | |
# 完全失敗 | |
processing_time = time.time() - start_time | |
return (0, processing_time) | |
except Exception as e: | |
processing_time = time.time() - start_time | |
return (0, processing_time) | |
def check_predefined_mapping(query: str) -> bool: | |
"""檢查查詢是否在預定義映射中""" | |
# 基於 medical_conditions.py 的 CONDITION_KEYWORD_MAPPING | |
from medical_conditions import CONDITION_KEYWORD_MAPPING | |
query_lower = query.lower() | |
for condition, keywords in CONDITION_KEYWORD_MAPPING.items(): | |
if any(keyword.lower() in query_lower for keyword in keywords): | |
return True | |
return False | |
``` | |
**目標閾值:** | |
- 早期攔截率 ≥ 70%(前兩層解決) | |
- 時間節省率 ≥ 60%(早期比後期快) | |
- 總成功率 ≥ 95%(漏接率 < 5%) | |
--- | |
## 🧪 更新的完整評估流程 | |
### 測試用例設計 | |
```python | |
# 基於 readme.md 中的範例查詢設計測試集 | |
MEDICAL_TEST_CASES = [ | |
# Level 1 預期成功(預定義映射) | |
"患者胸痛怎麼處理?", | |
"心肌梗死的診斷方法?", | |
# Level 2 預期成功(LLM抽取) | |
"60歲男性,有高血壓病史,突發胸痛。可能的原因和評估方法?", | |
"30歲患者突發嚴重頭痛和頸部僵硬。鑑別診斷?", | |
# Level 3+ 預期成功(複雜查詢) | |
"患者急性呼吸困難和腿部水腫。應該考慮什麼?", | |
"20歲女性,無病史,突發癲癇。可能原因和完整處理流程?", | |
# 邊界測試 | |
"疑似急性出血性中風。下一步處理?" | |
] | |
``` | |
### 更新的評估執行流程 | |
```python | |
def run_complete_evaluation(model_name: str, test_cases: List[str]) -> Dict[str, Any]: | |
"""執行完整的七項指標評估""" | |
results = { | |
"model": model_name, | |
"metrics": {}, | |
"detailed_results": [] | |
} | |
total_latencies = [] | |
extraction_successes = [] | |
relevance_scores = [] | |
coverage_scores = [] | |
actionability_scores = [] | |
evidence_scores = [] | |
fallback_efficiency_scores = [] # 新增 | |
for query in test_cases: | |
# 運行模型並測量所有指標 | |
# 1. 總處理時長 | |
latency_result = measure_total_latency(query) | |
total_latencies.append(latency_result['total_latency']) | |
# 2. 條件抽取成功率 | |
extraction_result = evaluate_condition_extraction([query]) | |
extraction_successes.append(extraction_result['success_rate']) | |
# 3 & 4. 檢索相關性和覆蓋率 | |
retrieval_results = get_retrieval_results(query) | |
relevance_result = evaluate_retrieval_relevance(retrieval_results) | |
relevance_scores.append(relevance_result['average_relevance']) | |
generated_advice = get_generated_advice(query, retrieval_results) | |
coverage_result = evaluate_retrieval_coverage(generated_advice, retrieval_results) | |
coverage_scores.append(coverage_result['coverage']) | |
# 5 & 6. LLM 評估 | |
response_data = { | |
'query': query, | |
'advice': generated_advice, | |
'retrieval_results': retrieval_results | |
} | |
actionability_result = evaluate_clinical_actionability([response_data]) | |
actionability_scores.append(actionability_result[0]['overall_score']) | |
evidence_result = evaluate_clinical_evidence([response_data]) | |
evidence_scores.append(evidence_result[0]['overall_score']) | |
# 7. 多層級 Fallback 效率(新增) | |
if model_name == "Med42-70B_general_RAG": # 只對YanBo系統測量 | |
fallback_result = evaluate_early_interception_efficiency([query]) | |
fallback_efficiency_scores.append(fallback_result['overall_efficiency_score']) | |
# 記錄詳細結果... | |
# 計算平均指標 | |
results["metrics"] = { | |
"average_latency": sum(total_latencies) / len(total_latencies), | |
"extraction_success_rate": sum(extraction_successes) / len(extraction_successes), | |
"average_relevance": sum(relevance_scores) / len(relevance_scores), | |
"average_coverage": sum(coverage_scores) / len(coverage_scores), | |
"average_actionability": sum(actionability_scores) / len(actionability_scores), | |
"average_evidence_score": sum(evidence_scores) / len(evidence_scores), | |
# 新增指標(只對RAG系統有效) | |
"average_fallback_efficiency": sum(fallback_efficiency_scores) / len(fallback_efficiency_scores) if fallback_efficiency_scores else 0.0 | |
} | |
return results | |
``` | |
--- | |
## 📊 更新的系統成功標準 | |
### 系統性能目標(七個指標) | |
``` | |
✅ 達標條件: | |
1. 總處理時長 ≤ 30秒 | |
2. 條件抽取成功率 ≥ 80% | |
3. 檢索相關性 ≥ 0.25(基於實際醫學數據) | |
4. 檢索覆蓋率 ≥ 60% | |
5. 臨床可操作性 ≥ 7.0/10 | |
6. 臨床證據評分 ≥ 7.5/10 | |
7. 早期攔截率 ≥ 70%(多層級 Fallback 效率) | |
🎯 YanBo RAG 系統成功標準: | |
- RAG增強版在 5-7 項指標上優於基線 Med42-70B | |
- 早期攔截率體現多層級設計的優勢 | |
- 整體提升幅度 ≥ 15% | |
``` | |
### YanBo 系統特有優勢分析 | |
``` | |
多層級 Fallback 優勢: | |
├── 漏接防護:通過多層級降低失敗率至 < 5% | |
├── 時間優化:70%+ 查詢在前兩層快速解決 | |
├── 系統穩定:即使某層級失敗,後續層級提供保障 | |
└── 智能分流:不同複雜度查詢自動分配到合適層級 | |
``` | |
--- | |
**第七個指標已添加完成,專注測量您的多層級 Fallback 系統的早期攔截效率和時間節省效果。** | |