infer-vst / back /main.py
Yann
fix temp folder
56a1afa
from contextlib import asynccontextmanager
import uuid
from dotenv import load_dotenv
from fastapi import Depends, FastAPI, File, HTTPException, UploadFile
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
import os
from starlette.exceptions import HTTPException as StarletteHTTPException
from fastapi.middleware.cors import CORSMiddleware
import pathlib
from contextlib import asynccontextmanager
from glob import glob
import os
from models.launch import inference, train_model
from models.spectrogram_cnn import get_model
# distinguish model type for reshaping
load_dotenv()
SERVER = str(os.environ.get('API_URL'))
path = os.path.dirname(os.path.realpath(__file__))
tempFolderPath = os.path.join(path, "temp")
if not os.path.exists(tempFolderPath):
os.makedirs(tempFolderPath)
def load_model_and_parameters():
setup = {
"model_name": "C6XL",
"dataset_name": "InverSynth",
"epochs": 1,
"dataset_dir": "test_datasets",
"output_dir": "output",
"dataset_file": None,
"parameters_file": None,
"data_format": "channels_last",
"run_name": None,
"resume": True,
}
setup["model_type"] = "STFT"
try:
# charger model
model, parameters_file = train_model(model_callback=get_model, **setup)
except Exception as e:
print(f"Couldn't load model: {e}")
return None, None
return model, parameters_file
@asynccontextmanager
async def lifespan(app: FastAPI):
# Remove all files in the temp folder
tempFolderPath = os.path.join(path, "temp")
if os.path.exists(tempFolderPath):
for file_name in os.listdir(tempFolderPath):
file_path = os.path.join(tempFolderPath, file_name)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
if not os.path.exists(tempFolderPath):
os.makedirs(tempFolderPath)
yield
app = FastAPI(lifespan=lifespan)
str_p = str(path)
class SPAStaticFiles(StaticFiles):
async def get_response(self, path: str, scope):
try:
return await super().get_response(path, scope)
except (HTTPException, StarletteHTTPException) as ex:
if ex.status_code == 404:
return await super().get_response("index.html", scope)
else:
raise ex
@app.get("/download/{file_id}")
async def generate_audio(file_id: str):
try:
# Use glob to find files starting with the specified ID
matching_files = glob(f"temp/{file_id}*")
if not matching_files:
# Handle the case when no matching file is found
print(f"No file found for file ID {file_id}")
raise HTTPException(status_code=404, detail="File not found")
# Assuming you want to copy the first matching file
else:
source_file_path = matching_files[0]
# Check if the file exists
# You can perform additional processing or send the file directly
return JSONResponse(content={"url": f"{source_file_path}"})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def is_valid_audio(file_extension):
# Define a list of valid audio file extensions
valid_audio_extensions = [".mp3", ".wav", ".ogg", ".flac", ".m4a"]
# Check if the provided file extension is in the list of valid audio extensions
return file_extension.lower() in valid_audio_extensions
@app.post("/upload/")
async def upload_audio_file(file: UploadFile = File(...)):
try:
model, parameters_file = load_model_and_parameters()
except:
raise("Couldn't load model")
try:
# Create a unique identifier for the uploaded file
file_id = str(uuid.uuid4())
# Extract the original file extension
_, file_extension = os.path.splitext(file.filename)
# Check if the file has a valid audio extension
if not is_valid_audio(file_extension):
raise HTTPException(status_code=400, detail="Invalid audio file format")
# Construct the file paths with the original file extension
file_path = os.path.join("temp", file_id + file_extension)
with open(file_path, "wb") as audio_file:
audio_file.write(file.file.read())
# generate_output_audio(file_path, output_file_path)
output = await start_inference(model=model, parameters_file=parameters_file, file_id=file_id, file_extension=file_extension)
# Send a confirmation with the identifier
print(SERVER+output[0])
return {"file_path": SERVER+output[0], "csv_path": SERVER+output[1], "output_file_path": SERVER+output[2]}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
async def start_inference(model, parameters_file, file_id: str, file_extension : str):
file_path = os.path.join("temp", file_id + file_extension)
output = inference(model=model, parameters_file=parameters_file, file_path=file_path, file_id=file_id)
return output
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=origins,
allow_headers=origins,
)
app.mount(
"/temp", StaticFiles(directory="temp", check_dir=True, html=True), name="temp"
)
app.mount(
"/",
SPAStaticFiles(directory=f"{pathlib.PurePath(str_p).parent}/front/dist", html=True),
name="dist",
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)