Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from model.warplayer import warp | |
# from train_log.refine import * | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | |
return nn.Sequential( | |
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, bias=True), | |
nn.LeakyReLU(0.2, True) | |
) | |
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | |
return nn.Sequential( | |
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, bias=False), | |
nn.BatchNorm2d(out_planes), | |
nn.LeakyReLU(0.2, True) | |
) | |
class ResConv(nn.Module): | |
def __init__(self, c, dilation=1): | |
super(ResConv, self).__init__() | |
self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1\ | |
) | |
self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True) | |
self.relu = nn.LeakyReLU(0.2, True) | |
def forward(self, x): | |
return self.relu(self.conv(x) * self.beta + x) | |
class IFBlock(nn.Module): | |
def __init__(self, in_planes, c=64): | |
super(IFBlock, self).__init__() | |
self.conv0 = nn.Sequential( | |
conv(in_planes, c//2, 3, 2, 1), | |
conv(c//2, c, 3, 2, 1), | |
) | |
self.convblock = nn.Sequential( | |
ResConv(c), | |
ResConv(c), | |
ResConv(c), | |
ResConv(c), | |
ResConv(c), | |
ResConv(c), | |
ResConv(c), | |
ResConv(c), | |
) | |
self.lastconv = nn.Sequential( | |
nn.ConvTranspose2d(c, 4*6, 4, 2, 1), | |
nn.PixelShuffle(2) | |
) | |
def forward(self, x, flow=None, scale=1): | |
x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False) | |
if flow is not None: | |
flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False) * 1. / scale | |
x = torch.cat((x, flow), 1) | |
feat = self.conv0(x) | |
feat = self.convblock(feat) | |
tmp = self.lastconv(feat) | |
tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False) | |
flow = tmp[:, :4] * scale | |
mask = tmp[:, 4:5] | |
return flow, mask | |
class IFNet(nn.Module): | |
def __init__(self): | |
super(IFNet, self).__init__() | |
self.block0 = IFBlock(7+8, c=192) | |
self.block1 = IFBlock(8+4+8, c=128) | |
self.block2 = IFBlock(8+4+8, c=96) | |
self.block3 = IFBlock(8+4+8, c=64) | |
self.encode = nn.Sequential( | |
nn.Conv2d(3, 16, 3, 2, 1), | |
nn.ConvTranspose2d(16, 4, 4, 2, 1) | |
) | |
# self.contextnet = Contextnet() | |
# self.unet = Unet() | |
def forward(self, x, timestep=0.5, scale_list=[8, 4, 2, 1], training=False, fastmode=True, ensemble=False): | |
if ensemble: | |
print('ensemble is removed') | |
if training == False: | |
channel = x.shape[1] // 2 | |
img0 = x[:, :channel] | |
img1 = x[:, channel:] | |
if not torch.is_tensor(timestep): | |
timestep = (x[:, :1].clone() * 0 + 1) * timestep | |
else: | |
timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3]) | |
f0 = self.encode(img0[:, :3]) | |
f1 = self.encode(img1[:, :3]) | |
flow_list = [] | |
merged = [] | |
mask_list = [] | |
warped_img0 = img0 | |
warped_img1 = img1 | |
flow = None | |
mask = None | |
loss_cons = 0 | |
block = [self.block0, self.block1, self.block2, self.block3] | |
for i in range(4): | |
if flow is None: | |
flow, mask = block[i](torch.cat((img0[:, :3], img1[:, :3], f0, f1, timestep), 1), None, scale=scale_list[i]) | |
else: | |
fd, mask = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], warp(f0, flow[:, :2]), warp(f1, flow[:, 2:4]), timestep, mask), 1), flow, scale=scale_list[i]) | |
flow = flow + fd | |
mask_list.append(mask) | |
flow_list.append(flow) | |
warped_img0 = warp(img0, flow[:, :2]) | |
warped_img1 = warp(img1, flow[:, 2:4]) | |
merged.append((warped_img0, warped_img1)) | |
mask = torch.sigmoid(mask) | |
merged[3] = (warped_img0 * mask + warped_img1 * (1 - mask)) | |
if not fastmode: | |
print('contextnet is removed') | |
''' | |
c0 = self.contextnet(img0, flow[:, :2]) | |
c1 = self.contextnet(img1, flow[:, 2:4]) | |
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) | |
res = tmp[:, :3] * 2 - 1 | |
merged[3] = torch.clamp(merged[3] + res, 0, 1) | |
''' | |
return flow_list, mask_list[3], merged | |