Spaces:
Running
Running
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
import cv2 | |
import numpy as np | |
from Gradio_UI import GradioUI | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
arg1: the first argument | |
arg2: the second argument | |
""" | |
return "What magic will you build ?" | |
def simple_object_detection(image_path: str, confidence_threshold: float) -> str: | |
""" | |
A tool that performs simple object detection on an image using MobileNet SSD with error handling. | |
Args: | |
image_path: Path to the input image. | |
confidence_threshold: Minimum confidence (e.g., 0.2) to filter weak detections. | |
Returns: | |
A string indicating the location of the saved processed image or an error message. | |
""" | |
try: | |
# List of class labels MobileNet SSD was trained on | |
classes = ["background", "aeroplane", "bicycle", "bird", "boat", | |
"bottle", "bus", "car", "cat", "chair", "cow", | |
"diningtable", "dog", "horse", "motorbike", "person", | |
"pottedplant", "sheep", "sofa", "train", "tvmonitor"] | |
# Paths to the pre-trained model files (ensure these files are downloaded) | |
prototxt_path = "MobileNetSSD_deploy.prototxt.txt" | |
model_path = "MobileNetSSD_deploy.caffemodel" | |
# Load the pre-trained model from disk | |
net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path) | |
# Load the image and get its dimensions | |
image = cv2.imread(image_path) | |
if image is None: | |
return f"Error: Image at {image_path} could not be loaded." | |
(h, w) = image.shape[:2] | |
# Prepare the image as a blob for the network | |
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), | |
scalefactor=0.007843, size=(300, 300), | |
mean=127.5) | |
# Pass the blob through the network to obtain detections | |
net.setInput(blob) | |
detections = net.forward() | |
# Loop over the detections and draw bounding boxes for those above the threshold | |
for i in range(0, detections.shape[2]): | |
confidence = detections[0, 0, i, 2] | |
if confidence > confidence_threshold: | |
idx = int(detections[0, 0, i, 1]) | |
# Compute bounding box coordinates | |
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) | |
(startX, startY, endX, endY) = box.astype("int") | |
# Draw the bounding box and label on the image | |
label = f"{classes[idx]}: {confidence * 100:.2f}%" | |
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2) | |
y = startY - 10 if startY - 10 > 10 else startY + 20 | |
cv2.putText(image, label, (startX, y), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
# Save the output image | |
output_path = "output.jpg" | |
cv2.imwrite(output_path, image) | |
return f"Processed image saved as {output_path}" | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[DuckDuckGoSearchTool(), simple_object_detection, get_current_time_in_timezone, final_answer], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |