diy-language-model / src /streamlit_app.py
zakerytclarke's picture
Update src/streamlit_app.py
b68a80c verified
import os
# βœ… Fix PermissionError on Hugging Face Spaces
os.environ["HF_HOME"] = "/tmp"
os.environ["HF_DATASETS_CACHE"] = "/tmp"
import streamlit as st
from datasets import load_dataset
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from collections import defaultdict, Counter
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
import random
st.title("🧠 Language Model Explorer")
###################################
# Sidebar configuration
###################################
dataset_name = st.sidebar.selectbox(
"Choose Dataset",
["squad", "tiny_shakespeare"]
)
tokenizer_type = st.sidebar.selectbox(
"Choose Tokenizer",
["character", "word"]
)
model_type = st.sidebar.selectbox(
"Choose Model",
["N-gram", "Feed Forward NN", "Decision Tree", "Gradient Boosted Tree", "RNN"]
)
temperature = st.sidebar.slider("Sampling Temperature", 0.1, 2.0, 1.0)
context_size = st.sidebar.slider("Context Size (how many tokens to look back)", min_value=2, max_value=10, value=3, step=1)
# Number of tokens from dataset to use for training (minimum 100 tokens)
num_train_tokens = st.sidebar.slider("Number of tokens from dataset to train on", min_value=100, max_value=100000, value=1000, step=100)
train_button = st.sidebar.button("Train Model")
device = torch.device("cpu") # force CPU usage
###################################
# Load dataset
###################################
@st.cache_data
def load_text(dataset_name):
if dataset_name == "squad":
data = load_dataset("squad", split="train[:1%]")
texts = [x['context'] for x in data]
elif dataset_name == "tiny_shakespeare":
data = load_dataset("tiny_shakespeare")
texts = [data['train'][0]['text']]
else:
texts = ["hello world"]
return " ".join(texts)
text_data = load_text(dataset_name)
###################################
# Tokenization
###################################
def tokenize(text, tokenizer_type):
if tokenizer_type == "character":
tokens = list(text)
elif tokenizer_type == "word":
tokens = text.split()
return tokens
tokens_all = tokenize(text_data, tokenizer_type)
# Cap tokens to requested number for training
tokens = tokens_all[:num_train_tokens]
vocab = list(set(tokens))
PAD_TOKEN = "<PAD>"
if PAD_TOKEN not in vocab:
vocab.append(PAD_TOKEN)
token_to_idx = {tok: i for i, tok in enumerate(vocab)}
idx_to_token = {i: tok for tok, i in token_to_idx.items()}
###################################
# Helper to pad context
###################################
def pad_context(context, size):
pad_len = size - len(context)
if pad_len > 0:
return [PAD_TOKEN]*pad_len + context
else:
return context[-size:]
###################################
# Models
###################################
class NGramModel:
def __init__(self, tokens, n=3):
self.n = n
self.model = defaultdict(Counter)
for i in range(len(tokens) - n):
context = tuple(tokens[i:i+n-1])
next_token = tokens[i+n-1]
self.model[context][next_token] += 1
def predict(self, context, temperature=1.0):
context = tuple(context[-(self.n-1):])
counts = self.model.get(context, None)
if counts is None:
return random.choice(list(token_to_idx.keys()))
items = list(counts.items())
tokens_, freqs = zip(*items)
probs = np.array(freqs, dtype=float)
probs = probs ** (1.0 / temperature)
probs /= probs.sum()
return np.random.choice(tokens_, p=probs)
###################################
# Feed Forward NN
###################################
class FFNN(nn.Module):
def __init__(self, vocab_size, context_size, hidden_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.fc1 = nn.Linear(hidden_size * context_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, vocab_size)
def forward(self, x):
x = self.embed(x)
x = x.view(x.size(0), -1)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
def train_ffnn(tokens, context_size=3, epochs=3):
data = []
for i in range(len(tokens) - (context_size - 1)):
context = tokens[i : i + context_size - 1]
context = pad_context(context, context_size - 1)
target = tokens[i + context_size - 1]
data.append((
torch.tensor([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context], device=device),
token_to_idx.get(target, token_to_idx[PAD_TOKEN])
))
if len(data) == 0:
st.warning("No training data generated. Increase dataset size or reduce context size.")
return None
model = FFNN(len(vocab), context_size - 1).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
progress_bar = st.progress(0)
total_steps = len(data) * epochs
step = 0
model.train()
for epoch in range(epochs):
total_loss = 0
random.shuffle(data)
for x, y in data:
x = x.unsqueeze(0)
y = torch.tensor([y], device=device)
optimizer.zero_grad()
out = model(x)
loss = criterion(out, y)
loss.backward()
optimizer.step()
total_loss += loss.item()
step += 1
progress_bar.progress(step / total_steps)
st.write(f"Epoch {epoch+1}, Loss: {total_loss/len(data):.4f}")
progress_bar.empty()
return model
def ffnn_predict(model, context, temperature=1.0):
context = pad_context(context, context_size - 1)
x = torch.tensor([token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context], device=device).unsqueeze(0)
with torch.no_grad():
logits = model(x).squeeze()
probs = torch.softmax(logits / temperature, dim=0).cpu().numpy()
return np.random.choice(vocab, p=probs)
###################################
# Decision Tree
###################################
def train_dt(tokens, context_size=3):
X, y = [], []
for i in range(len(tokens) - (context_size - 1)):
context = tokens[i : i + context_size - 1]
context = pad_context(context, context_size - 1)
target = tokens[i + context_size - 1]
X.append([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context])
y.append(token_to_idx.get(target, token_to_idx[PAD_TOKEN]))
with st.spinner("Training Decision Tree..."):
model = DecisionTreeClassifier()
model.fit(X, y)
return model
def dt_predict(model, context):
context = pad_context(context, context_size - 1)
x = [token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context]
pred = model.predict([x])[0]
return idx_to_token[pred]
###################################
# Gradient Boosted Tree
###################################
def train_gbt(tokens, context_size=3):
X, y = [], []
for i in range(len(tokens) - (context_size - 1)):
context = tokens[i : i + context_size - 1]
context = pad_context(context, context_size - 1)
target = tokens[i + context_size - 1]
X.append([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context])
y.append(token_to_idx.get(target, token_to_idx[PAD_TOKEN]))
with st.spinner("Training Gradient Boosted Tree..."):
model = GradientBoostingClassifier()
model.fit(X, y)
return model
def gbt_predict(model, context):
context = pad_context(context, context_size - 1)
x = [token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context]
pred = model.predict([x])[0]
return idx_to_token[pred]
###################################
# RNN
###################################
class RNNModel(nn.Module):
def __init__(self, vocab_size, embed_size=64, hidden_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.RNN(embed_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, h=None):
x = self.embed(x)
out, h = self.rnn(x, h)
out = self.fc(out[:, -1, :])
return out, h
def train_rnn(tokens, context_size=3, epochs=3):
data = []
for i in range(len(tokens) - (context_size - 1)):
context = tokens[i : i + context_size - 1]
context = pad_context(context, context_size - 1)
target = tokens[i + context_size - 1]
data.append((
torch.tensor([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context], device=device),
token_to_idx.get(target, token_to_idx[PAD_TOKEN])
))
if len(data) == 0:
st.warning("No training data generated. Increase dataset size or reduce context size.")
return None
model = RNNModel(len(vocab)).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
progress_bar = st.progress(0)
total_steps = len(data) * epochs
step = 0
model.train()
for epoch in range(epochs):
total_loss = 0
h = None
random.shuffle(data)
for x, y in data:
x = x.unsqueeze(0)
y = torch.tensor([y], device=device)
out, h = model(x, h)
loss = criterion(out, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
step += 1
progress_bar.progress(step / total_steps)
st.write(f"Epoch {epoch+1}, Loss: {total_loss/len(data):.4f}")
progress_bar.empty()
return model
def rnn_predict(model, context, temperature=1.0):
context = pad_context(context, context_size - 1)
x = torch.tensor([token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context], device=device).unsqueeze(0)
with torch.no_grad():
logits, _ = model(x)
probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy()
return np.random.choice(vocab, p=probs)
###################################
# Train and evaluate
###################################
if train_button:
st.write(f"Training **{model_type}** model with context size {context_size} on {len(tokens)} tokens...")
if model_type == "N-gram":
with st.spinner("Training N-gram model..."):
model = NGramModel(tokens, n=context_size)
elif model_type == "Feed Forward NN":
model = train_ffnn(tokens, context_size=context_size)
elif model_type == "Decision Tree":
model = train_dt(tokens, context_size=context_size)
elif model_type == "Gradient Boosted Tree":
model = train_gbt(tokens, context_size=context_size)
elif model_type == "RNN":
model = train_rnn(tokens, context_size=context_size)
if model is not None:
st.session_state["model"] = model
st.session_state["model_type"] = model_type
st.session_state["context_size"] = context_size
st.success(f"{model_type} model trained.")
else:
st.error("Training failed due to no data.")
###################################
# Chat interface
###################################
st.header("πŸ’¬ Chat with the model")
if "model" in st.session_state:
user_input = st.text_input("Type a prompt:")
if user_input:
context = tokenize(user_input, tokenizer_type)
generated = context.copy()
for _ in range(20):
ctx = pad_context(generated, st.session_state["context_size"] - 1)
if st.session_state["model_type"] == "N-gram":
next_tok = st.session_state["model"].predict(ctx, temperature)
elif st.session_state["model_type"] == "Feed Forward NN":
next_tok = ffnn_predict(st.session_state["model"], ctx, temperature)
elif st.session_state["model_type"] == "Decision Tree":
next_tok = dt_predict(st.session_state["model"], ctx)
elif st.session_state["model_type"] == "Gradient Boosted Tree":
next_tok = gbt_predict(st.session_state["model"], ctx)
elif st.session_state["model_type"] == "RNN":
next_tok = rnn_predict(st.session_state["model"], ctx, temperature)
generated.append(next_tok)
if next_tok == "<END>":
break
if tokenizer_type == "character":
output = "".join(generated)
else:
output = " ".join(generated)
st.write("**Model Output:**")
st.write(output)
else:
st.info("Train a model to begin chatting.")