Spaces:
Running
on
Zero
Running
on
Zero
aoti-blocks-load
#23
by
cbensimon
HF Staff
- opened
- aoti.py +35 -0
- app.py +44 -17
- optimization.py +0 -106
- optimization_utils.py +0 -107
aoti.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
"""
|
3 |
+
|
4 |
+
from typing import cast
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from spaces.zero.torch.aoti import ZeroGPUCompiledModel
|
9 |
+
from spaces.zero.torch.aoti import ZeroGPUWeights
|
10 |
+
from torch._functorch._aot_autograd.subclass_parametrization import unwrap_tensor_subclass_parameters
|
11 |
+
|
12 |
+
|
13 |
+
def _shallow_clone_module(module: torch.nn.Module) -> torch.nn.Module:
|
14 |
+
clone = object.__new__(module.__class__)
|
15 |
+
clone.__dict__ = module.__dict__.copy()
|
16 |
+
clone._parameters = module._parameters.copy()
|
17 |
+
clone._buffers = module._buffers.copy()
|
18 |
+
clone._modules = {k: _shallow_clone_module(v) for k, v in module._modules.items() if v is not None}
|
19 |
+
return clone
|
20 |
+
|
21 |
+
|
22 |
+
def aoti_blocks_load(module: torch.nn.Module, repo_id: str, variant: str | None = None):
|
23 |
+
repeated_blocks = cast(list[str], module._repeated_blocks)
|
24 |
+
aoti_files = {name: hf_hub_download(
|
25 |
+
repo_id=repo_id,
|
26 |
+
filename='package.pt2',
|
27 |
+
subfolder=name if variant is None else f'{name}.{variant}',
|
28 |
+
) for name in repeated_blocks}
|
29 |
+
for block_name, aoti_file in aoti_files.items():
|
30 |
+
for block in module.modules():
|
31 |
+
if block.__class__.__name__ == block_name:
|
32 |
+
block_ = _shallow_clone_module(block)
|
33 |
+
unwrap_tensor_subclass_parameters(block_)
|
34 |
+
weights = ZeroGPUWeights(block_.state_dict())
|
35 |
+
block.forward = ZeroGPUCompiledModel(aoti_file, weights)
|
app.py
CHANGED
@@ -9,7 +9,12 @@ import numpy as np
|
|
9 |
from PIL import Image
|
10 |
import random
|
11 |
import gc
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
@@ -23,7 +28,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
23 |
|
24 |
FIXED_FPS = 16
|
25 |
MIN_FRAMES_MODEL = 8
|
26 |
-
MAX_FRAMES_MODEL =
|
27 |
|
28 |
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
|
29 |
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
|
@@ -43,21 +48,29 @@ pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
|
|
43 |
torch_dtype=torch.bfloat16,
|
44 |
).to('cuda')
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
prompt='prompt',
|
57 |
-
height=OPTIMIZE_HEIGHT,
|
58 |
-
width=OPTIMIZE_WIDTH,
|
59 |
-
num_frames=MAX_FRAMES_MODEL,
|
60 |
-
)
|
61 |
|
62 |
|
63 |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
@@ -109,6 +122,14 @@ def resize_image(image: Image.Image) -> Image.Image:
|
|
109 |
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def get_duration(
|
113 |
input_image,
|
114 |
prompt,
|
@@ -121,7 +142,13 @@ def get_duration(
|
|
121 |
randomize_seed,
|
122 |
progress,
|
123 |
):
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
@spaces.GPU(duration=get_duration)
|
127 |
def generate_video(
|
@@ -179,7 +206,7 @@ def generate_video(
|
|
179 |
if input_image is None:
|
180 |
raise gr.Error("Please upload an input image.")
|
181 |
|
182 |
-
num_frames =
|
183 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
184 |
resized_image = resize_image(input_image)
|
185 |
|
|
|
9 |
from PIL import Image
|
10 |
import random
|
11 |
import gc
|
12 |
+
|
13 |
+
from torchao.quantization import quantize_
|
14 |
+
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
15 |
+
from torchao.quantization import Int8WeightOnlyConfig
|
16 |
+
|
17 |
+
import aoti
|
18 |
|
19 |
|
20 |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
|
|
28 |
|
29 |
FIXED_FPS = 16
|
30 |
MIN_FRAMES_MODEL = 8
|
31 |
+
MAX_FRAMES_MODEL = 80
|
32 |
|
33 |
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
|
34 |
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
|
|
|
48 |
torch_dtype=torch.bfloat16,
|
49 |
).to('cuda')
|
50 |
|
51 |
+
pipe.load_lora_weights(
|
52 |
+
"Kijai/WanVideo_comfy",
|
53 |
+
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
54 |
+
adapter_name="lightx2v"
|
55 |
+
)
|
56 |
+
kwargs_lora = {}
|
57 |
+
kwargs_lora["load_into_transformer_2"] = True
|
58 |
+
pipe.load_lora_weights(
|
59 |
+
"Kijai/WanVideo_comfy",
|
60 |
+
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
61 |
+
adapter_name="lightx2v_2", **kwargs_lora
|
62 |
+
)
|
63 |
+
pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
|
64 |
+
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
|
65 |
+
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
|
66 |
+
pipe.unload_lora_weights()
|
67 |
|
68 |
+
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
|
69 |
+
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
|
70 |
+
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
71 |
|
72 |
+
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
|
73 |
+
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
|
|
122 |
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
|
123 |
|
124 |
|
125 |
+
def get_num_frames(duration_seconds: float):
|
126 |
+
return 1 + int(np.clip(
|
127 |
+
int(round(duration_seconds * FIXED_FPS)),
|
128 |
+
MIN_FRAMES_MODEL,
|
129 |
+
MAX_FRAMES_MODEL,
|
130 |
+
))
|
131 |
+
|
132 |
+
|
133 |
def get_duration(
|
134 |
input_image,
|
135 |
prompt,
|
|
|
142 |
randomize_seed,
|
143 |
progress,
|
144 |
):
|
145 |
+
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
|
146 |
+
BASE_STEP_DURATION = 15
|
147 |
+
width, height = resize_image(input_image).size
|
148 |
+
frames = get_num_frames(duration_seconds)
|
149 |
+
factor = frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
|
150 |
+
step_duration = BASE_STEP_DURATION * factor ** 1.5
|
151 |
+
return 10 + int(steps) * step_duration
|
152 |
|
153 |
@spaces.GPU(duration=get_duration)
|
154 |
def generate_video(
|
|
|
206 |
if input_image is None:
|
207 |
raise gr.Error("Please upload an input image.")
|
208 |
|
209 |
+
num_frames = get_num_frames(duration_seconds)
|
210 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
211 |
resized_image = resize_image(input_image)
|
212 |
|
optimization.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
|
4 |
-
from typing import Any
|
5 |
-
from typing import Callable
|
6 |
-
from typing import ParamSpec
|
7 |
-
|
8 |
-
import spaces
|
9 |
-
import torch
|
10 |
-
from torch.utils._pytree import tree_map_only
|
11 |
-
from torchao.quantization import quantize_
|
12 |
-
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
13 |
-
from torchao.quantization import Int8WeightOnlyConfig
|
14 |
-
|
15 |
-
from optimization_utils import capture_component_call
|
16 |
-
from optimization_utils import aoti_compile
|
17 |
-
from optimization_utils import drain_module_parameters
|
18 |
-
|
19 |
-
|
20 |
-
P = ParamSpec('P')
|
21 |
-
|
22 |
-
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81)
|
23 |
-
|
24 |
-
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52)
|
25 |
-
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52)
|
26 |
-
|
27 |
-
TRANSFORMER_DYNAMIC_SHAPES = {
|
28 |
-
'hidden_states': {
|
29 |
-
2: LATENT_FRAMES_DIM,
|
30 |
-
3: 2 * LATENT_PATCHED_HEIGHT_DIM,
|
31 |
-
4: 2 * LATENT_PATCHED_WIDTH_DIM,
|
32 |
-
},
|
33 |
-
}
|
34 |
-
|
35 |
-
INDUCTOR_CONFIGS = {
|
36 |
-
'conv_1x1_as_mm': True,
|
37 |
-
'epilogue_fusion': False,
|
38 |
-
'coordinate_descent_tuning': True,
|
39 |
-
'coordinate_descent_check_all_directions': True,
|
40 |
-
'max_autotune': True,
|
41 |
-
'triton.cudagraphs': True,
|
42 |
-
}
|
43 |
-
|
44 |
-
|
45 |
-
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
46 |
-
|
47 |
-
@spaces.GPU(duration=1500)
|
48 |
-
def compile_transformer():
|
49 |
-
|
50 |
-
# This LoRA fusion part remains the same
|
51 |
-
pipeline.load_lora_weights(
|
52 |
-
"Kijai/WanVideo_comfy",
|
53 |
-
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
54 |
-
adapter_name="lightx2v"
|
55 |
-
)
|
56 |
-
kwargs_lora = {}
|
57 |
-
kwargs_lora["load_into_transformer_2"] = True
|
58 |
-
pipeline.load_lora_weights(
|
59 |
-
"Kijai/WanVideo_comfy",
|
60 |
-
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
61 |
-
adapter_name="lightx2v_2", **kwargs_lora
|
62 |
-
)
|
63 |
-
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
|
64 |
-
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
|
65 |
-
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
|
66 |
-
pipeline.unload_lora_weights()
|
67 |
-
|
68 |
-
with capture_component_call(pipeline, 'transformer') as call:
|
69 |
-
pipeline(*args, **kwargs)
|
70 |
-
|
71 |
-
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
|
72 |
-
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
|
73 |
-
|
74 |
-
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
75 |
-
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
76 |
-
|
77 |
-
|
78 |
-
exported_1 = torch.export.export(
|
79 |
-
mod=pipeline.transformer,
|
80 |
-
args=call.args,
|
81 |
-
kwargs=call.kwargs,
|
82 |
-
dynamic_shapes=dynamic_shapes,
|
83 |
-
)
|
84 |
-
|
85 |
-
exported_2 = torch.export.export(
|
86 |
-
mod=pipeline.transformer_2,
|
87 |
-
args=call.args,
|
88 |
-
kwargs=call.kwargs,
|
89 |
-
dynamic_shapes=dynamic_shapes,
|
90 |
-
)
|
91 |
-
|
92 |
-
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS)
|
93 |
-
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS)
|
94 |
-
|
95 |
-
return compiled_1, compiled_2
|
96 |
-
|
97 |
-
|
98 |
-
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
99 |
-
|
100 |
-
compiled_transformer_1, compiled_transformer_2 = compile_transformer()
|
101 |
-
|
102 |
-
pipeline.transformer.forward = compiled_transformer_1
|
103 |
-
drain_module_parameters(pipeline.transformer)
|
104 |
-
|
105 |
-
pipeline.transformer_2.forward = compiled_transformer_2
|
106 |
-
drain_module_parameters(pipeline.transformer_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
optimization_utils.py
DELETED
@@ -1,107 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
import contextlib
|
4 |
-
from contextvars import ContextVar
|
5 |
-
from io import BytesIO
|
6 |
-
from typing import Any
|
7 |
-
from typing import cast
|
8 |
-
from unittest.mock import patch
|
9 |
-
|
10 |
-
import torch
|
11 |
-
from torch._inductor.package.package import package_aoti
|
12 |
-
from torch.export.pt2_archive._package import AOTICompiledModel
|
13 |
-
from torch.export.pt2_archive._package_weights import Weights
|
14 |
-
|
15 |
-
|
16 |
-
INDUCTOR_CONFIGS_OVERRIDES = {
|
17 |
-
'aot_inductor.package_constants_in_so': False,
|
18 |
-
'aot_inductor.package_constants_on_disk': True,
|
19 |
-
'aot_inductor.package': True,
|
20 |
-
}
|
21 |
-
|
22 |
-
|
23 |
-
class ZeroGPUWeights:
|
24 |
-
def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
|
25 |
-
if to_cuda:
|
26 |
-
self.constants_map = {name: tensor.to('cuda') for name, tensor in constants_map.items()}
|
27 |
-
else:
|
28 |
-
self.constants_map = constants_map
|
29 |
-
def __reduce__(self):
|
30 |
-
constants_map: dict[str, torch.Tensor] = {}
|
31 |
-
for name, tensor in self.constants_map.items():
|
32 |
-
tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
|
33 |
-
constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
|
34 |
-
return ZeroGPUWeights, (constants_map, True)
|
35 |
-
|
36 |
-
|
37 |
-
class ZeroGPUCompiledModel:
|
38 |
-
def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
|
39 |
-
self.archive_file = archive_file
|
40 |
-
self.weights = weights
|
41 |
-
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
|
42 |
-
def __call__(self, *args, **kwargs):
|
43 |
-
if (compiled_model := self.compiled_model.get()) is None:
|
44 |
-
compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
|
45 |
-
compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
|
46 |
-
self.compiled_model.set(compiled_model)
|
47 |
-
return compiled_model(*args, **kwargs)
|
48 |
-
def __reduce__(self):
|
49 |
-
return ZeroGPUCompiledModel, (self.archive_file, self.weights)
|
50 |
-
|
51 |
-
|
52 |
-
def aoti_compile(
|
53 |
-
exported_program: torch.export.ExportedProgram,
|
54 |
-
inductor_configs: dict[str, Any] | None = None,
|
55 |
-
):
|
56 |
-
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
|
57 |
-
gm = cast(torch.fx.GraphModule, exported_program.module())
|
58 |
-
assert exported_program.example_inputs is not None
|
59 |
-
args, kwargs = exported_program.example_inputs
|
60 |
-
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
|
61 |
-
archive_file = BytesIO()
|
62 |
-
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
|
63 |
-
package_aoti(archive_file, files)
|
64 |
-
weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
|
65 |
-
zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights})
|
66 |
-
return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
|
67 |
-
|
68 |
-
|
69 |
-
@contextlib.contextmanager
|
70 |
-
def capture_component_call(
|
71 |
-
pipeline: Any,
|
72 |
-
component_name: str,
|
73 |
-
component_method='forward',
|
74 |
-
):
|
75 |
-
|
76 |
-
class CapturedCallException(Exception):
|
77 |
-
def __init__(self, *args, **kwargs):
|
78 |
-
super().__init__()
|
79 |
-
self.args = args
|
80 |
-
self.kwargs = kwargs
|
81 |
-
|
82 |
-
class CapturedCall:
|
83 |
-
def __init__(self):
|
84 |
-
self.args: tuple[Any, ...] = ()
|
85 |
-
self.kwargs: dict[str, Any] = {}
|
86 |
-
|
87 |
-
component = getattr(pipeline, component_name)
|
88 |
-
captured_call = CapturedCall()
|
89 |
-
|
90 |
-
def capture_call(*args, **kwargs):
|
91 |
-
raise CapturedCallException(*args, **kwargs)
|
92 |
-
|
93 |
-
with patch.object(component, component_method, new=capture_call):
|
94 |
-
try:
|
95 |
-
yield captured_call
|
96 |
-
except CapturedCallException as e:
|
97 |
-
captured_call.args = e.args
|
98 |
-
captured_call.kwargs = e.kwargs
|
99 |
-
|
100 |
-
|
101 |
-
def drain_module_parameters(module: torch.nn.Module):
|
102 |
-
state_dict_meta = {name: {'device': tensor.device, 'dtype': tensor.dtype} for name, tensor in module.state_dict().items()}
|
103 |
-
state_dict = {name: torch.nn.Parameter(torch.empty_like(tensor, device='cpu')) for name, tensor in module.state_dict().items()}
|
104 |
-
module.load_state_dict(state_dict, assign=True)
|
105 |
-
for name, param in state_dict.items():
|
106 |
-
meta = state_dict_meta[name]
|
107 |
-
param.data = torch.Tensor([]).to(**meta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|