Spaces:
Running
on
Zero
Running
on
Zero
Update optimization.py
#1
by
linoyts
HF Staff
- opened
- app.py +28 -64
- optimization.py +16 -16
app.py
CHANGED
@@ -19,8 +19,8 @@ from optimization import optimize_pipeline_
|
|
19 |
|
20 |
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
|
21 |
|
22 |
-
LANDSCAPE_WIDTH =
|
23 |
-
LANDSCAPE_HEIGHT =
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
|
26 |
FIXED_FPS = 16
|
@@ -46,34 +46,6 @@ pipe = WanPipeline.from_pretrained(MODEL_ID,
|
|
46 |
torch_dtype=torch.bfloat16,
|
47 |
).to('cuda')
|
48 |
|
49 |
-
# load, fuse, unload before compilation
|
50 |
-
# pipe.load_lora_weights(
|
51 |
-
# "vrgamedevgirl84/Wan14BT2VFusioniX",
|
52 |
-
# weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors",
|
53 |
-
# adapter_name="phantom"
|
54 |
-
# )
|
55 |
-
|
56 |
-
# pipe.set_adapters(["phantom"], adapter_weights=[0.95])
|
57 |
-
# pipe.fuse_lora(adapter_names=["phantom"], lora_scale=1.0)
|
58 |
-
# pipe.unload_lora_weights()
|
59 |
-
|
60 |
-
|
61 |
-
# pipe.load_lora_weights(
|
62 |
-
# "vrgamedevgirl84/Wan14BT2VFusioniX",
|
63 |
-
# weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors",
|
64 |
-
# adapter_name="phantom"
|
65 |
-
# )
|
66 |
-
# kwargs = {}
|
67 |
-
# kwargs["load_into_transformer_2"] = True
|
68 |
-
# pipe.load_lora_weights(
|
69 |
-
# "vrgamedevgirl84/Wan14BT2VFusioniX",
|
70 |
-
# weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors",
|
71 |
-
# adapter_name="phantom_2", **kwargs
|
72 |
-
# )
|
73 |
-
# pipe.set_adapters(["phantom", "phantom_2"], adapter_weights=[1., 1.])
|
74 |
-
# pipe.fuse_lora(adapter_names=["phantom"], lora_scale=3., components=["transformer"])
|
75 |
-
# pipe.fuse_lora(adapter_names=["phantom_2"], lora_scale=1., components=["transformer_2"])
|
76 |
-
# pipe.unload_lora_weights()
|
77 |
|
78 |
for i in range(3):
|
79 |
gc.collect()
|
@@ -95,7 +67,6 @@ default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字
|
|
95 |
def get_duration(
|
96 |
prompt,
|
97 |
negative_prompt,
|
98 |
-
duration_seconds,
|
99 |
guidance_scale,
|
100 |
guidance_scale_2,
|
101 |
steps,
|
@@ -106,13 +77,12 @@ def get_duration(
|
|
106 |
return steps * 15
|
107 |
|
108 |
@spaces.GPU(duration=get_duration)
|
109 |
-
def
|
110 |
prompt,
|
111 |
negative_prompt=default_negative_prompt,
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
steps = 4,
|
116 |
seed = 42,
|
117 |
randomize_seed = False,
|
118 |
progress=gr.Progress(track_tqdm=True),
|
@@ -128,8 +98,6 @@ def generate_video(
|
|
128 |
prompt (str): Text prompt describing the desired animation or motion.
|
129 |
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
|
130 |
Defaults to default_negative_prompt (contains unwanted visual artifacts).
|
131 |
-
duration_seconds (float, optional): Duration of the generated video in seconds.
|
132 |
-
Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
|
133 |
guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
|
134 |
Defaults to 1.0. Range: 0.0-20.0.
|
135 |
guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
|
@@ -158,62 +126,58 @@ def generate_video(
|
|
158 |
- Generation time varies based on steps and duration (see get_duration function)
|
159 |
"""
|
160 |
|
161 |
-
|
162 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
163 |
|
164 |
-
|
165 |
prompt=prompt,
|
166 |
negative_prompt=negative_prompt,
|
167 |
-
height=
|
168 |
-
width=
|
169 |
-
num_frames=
|
170 |
guidance_scale=float(guidance_scale),
|
171 |
guidance_scale_2=float(guidance_scale_2),
|
172 |
num_inference_steps=int(steps),
|
|
|
173 |
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
174 |
-
).frames[0]
|
175 |
|
176 |
-
|
177 |
-
video_path = tmpfile.name
|
178 |
-
|
179 |
-
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
180 |
-
|
181 |
-
return video_path, current_seed
|
182 |
|
183 |
with gr.Blocks() as demo:
|
184 |
-
gr.Markdown("#
|
185 |
-
gr.Markdown("run Wan 2.2 in just 6-8 steps, with [FusionX Phantom LoRA by DeeJayT](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/tree/main/FusionX_LoRa), compatible with 🧨 diffusers")
|
186 |
with gr.Row():
|
187 |
with gr.Column():
|
188 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
|
189 |
-
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
|
190 |
|
191 |
with gr.Accordion("Advanced Settings", open=False):
|
192 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
193 |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
194 |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
195 |
-
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=
|
196 |
-
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=
|
197 |
-
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=
|
198 |
|
199 |
-
generate_button = gr.Button("Generate
|
200 |
with gr.Column():
|
201 |
-
|
202 |
|
203 |
-
ui_inputs = [
|
204 |
-
|
205 |
-
negative_prompt_input,
|
206 |
guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
|
207 |
]
|
208 |
-
generate_button.click(fn=
|
209 |
|
210 |
gr.Examples(
|
211 |
examples=[
|
212 |
[
|
213 |
-
"
|
214 |
],
|
215 |
],
|
216 |
-
inputs=[prompt_input], outputs=[
|
217 |
)
|
218 |
|
219 |
if __name__ == "__main__":
|
|
|
19 |
|
20 |
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
|
21 |
|
22 |
+
LANDSCAPE_WIDTH = 1024
|
23 |
+
LANDSCAPE_HEIGHT = 1024
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
|
26 |
FIXED_FPS = 16
|
|
|
46 |
torch_dtype=torch.bfloat16,
|
47 |
).to('cuda')
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
for i in range(3):
|
51 |
gc.collect()
|
|
|
67 |
def get_duration(
|
68 |
prompt,
|
69 |
negative_prompt,
|
|
|
70 |
guidance_scale,
|
71 |
guidance_scale_2,
|
72 |
steps,
|
|
|
77 |
return steps * 15
|
78 |
|
79 |
@spaces.GPU(duration=get_duration)
|
80 |
+
def generate_image(
|
81 |
prompt,
|
82 |
negative_prompt=default_negative_prompt,
|
83 |
+
guidance_scale = 3.5,
|
84 |
+
guidance_scale_2 = 4,
|
85 |
+
steps = 27,
|
|
|
86 |
seed = 42,
|
87 |
randomize_seed = False,
|
88 |
progress=gr.Progress(track_tqdm=True),
|
|
|
98 |
prompt (str): Text prompt describing the desired animation or motion.
|
99 |
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
|
100 |
Defaults to default_negative_prompt (contains unwanted visual artifacts).
|
|
|
|
|
101 |
guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
|
102 |
Defaults to 1.0. Range: 0.0-20.0.
|
103 |
guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
|
|
|
126 |
- Generation time varies based on steps and duration (see get_duration function)
|
127 |
"""
|
128 |
|
129 |
+
|
130 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
131 |
|
132 |
+
out_img = pipe(
|
133 |
prompt=prompt,
|
134 |
negative_prompt=negative_prompt,
|
135 |
+
height=1024,
|
136 |
+
width=1024,
|
137 |
+
num_frames=1,
|
138 |
guidance_scale=float(guidance_scale),
|
139 |
guidance_scale_2=float(guidance_scale_2),
|
140 |
num_inference_steps=int(steps),
|
141 |
+
output_type="pil",
|
142 |
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
143 |
+
).frames[0][0]
|
144 |
|
145 |
+
return out_img, current_seed
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
with gr.Blocks() as demo:
|
148 |
+
gr.Markdown("# Wan 2.2 T2I (14B)")
|
149 |
+
#gr.Markdown("run Wan 2.2 in just 6-8 steps, with [FusionX Phantom LoRA by DeeJayT](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/tree/main/FusionX_LoRa), compatible with 🧨 diffusers")
|
150 |
with gr.Row():
|
151 |
with gr.Column():
|
152 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
|
153 |
+
#duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
|
154 |
|
155 |
with gr.Accordion("Advanced Settings", open=False):
|
156 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
157 |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
158 |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
159 |
+
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=27, label="Inference Steps")
|
160 |
+
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3.5, label="Guidance Scale - high noise stage")
|
161 |
+
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=4, label="Guidance Scale 2 - low noise stage")
|
162 |
|
163 |
+
generate_button = gr.Button("Generate Image", variant="primary")
|
164 |
with gr.Column():
|
165 |
+
img_output = gr.Image(label="Generated Image", interactive=False)
|
166 |
|
167 |
+
ui_inputs = [
|
168 |
+
prompt_input,
|
169 |
+
negative_prompt_input,
|
170 |
guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
|
171 |
]
|
172 |
+
generate_button.click(fn=generate_image, inputs=ui_inputs, outputs=[img_output, seed_input])
|
173 |
|
174 |
gr.Examples(
|
175 |
examples=[
|
176 |
[
|
177 |
+
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
|
178 |
],
|
179 |
],
|
180 |
+
inputs=[prompt_input], outputs=[img_output, seed_input], fn=generate_image, cache_examples="lazy"
|
181 |
)
|
182 |
|
183 |
if __name__ == "__main__":
|
optimization.py
CHANGED
@@ -43,22 +43,22 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
43 |
@spaces.GPU(duration=1500)
|
44 |
def compile_transformer():
|
45 |
|
46 |
-
pipeline.load_lora_weights(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
)
|
51 |
-
kwargs_lora = {}
|
52 |
-
kwargs_lora["load_into_transformer_2"] = True
|
53 |
-
pipeline.load_lora_weights(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
58 |
-
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
|
59 |
-
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
|
60 |
-
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
|
61 |
-
pipeline.unload_lora_weights()
|
62 |
|
63 |
with capture_component_call(pipeline, 'transformer') as call:
|
64 |
pipeline(*args, **kwargs)
|
|
|
43 |
@spaces.GPU(duration=1500)
|
44 |
def compile_transformer():
|
45 |
|
46 |
+
# pipeline.load_lora_weights(
|
47 |
+
# "Kijai/WanVideo_comfy",
|
48 |
+
# weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
49 |
+
# adapter_name="lightx2v"
|
50 |
+
# )
|
51 |
+
# kwargs_lora = {}
|
52 |
+
# kwargs_lora["load_into_transformer_2"] = True
|
53 |
+
# pipeline.load_lora_weights(
|
54 |
+
# "Kijai/WanVideo_comfy",
|
55 |
+
# weight_name="Wan22-Lightning/Wan2.2-Lightning_T2V-A14B-4steps-lora_LOW_fp16.safetensors",
|
56 |
+
# adapter_name="lightx2v_2", **kwargs_lora
|
57 |
+
# )
|
58 |
+
# pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
|
59 |
+
# pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
|
60 |
+
# pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
|
61 |
+
# pipeline.unload_lora_weights()
|
62 |
|
63 |
with capture_component_call(pipeline, 'transformer') as call:
|
64 |
pipeline(*args, **kwargs)
|