|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- tencent/Hunyuan-A13B-Instruct |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [tencent/Hunyuan-A13B-Instruct](https://huggingface.co/tencent/Hunyuan-A13B-Instruct). |
|
|
|
### Example usage: |
|
|
|
```python |
|
import os |
|
import re |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "tiny-random/hunyuan-moe" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
# You may want to use bfloat16 and/or move to GPU here |
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) |
|
messages = [ |
|
{"role": "user", "content": "Write a short summary of the benefits of regular exercise"}, |
|
] |
|
tokenized_chat = tokenizer.apply_chat_template( |
|
messages, tokenize=True, return_tensors="pt", |
|
enable_thinking=True, # Toggle thinking mode (default: True) |
|
) |
|
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=32) |
|
output_text = tokenizer.decode(outputs[0]) |
|
print(output_text) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
import accelerate |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "tencent/Hunyuan-A13B-Instruct" |
|
save_folder = "/tmp/tiny-random/hunyuan-moe" |
|
|
|
processor = AutoTokenizer.from_pretrained(source_model_id, trust_remote_code=True) |
|
processor.save_pretrained(save_folder) |
|
|
|
hf_hub_download(source_model_id, filename='hy.tiktoken', repo_type='model', local_dir=save_folder, local_dir_use_symlinks=False) |
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
|
|
for k, v in config_json['auto_map'].items(): |
|
config_json['auto_map'][k] = f'{source_model_id}--{v}' |
|
config_json['attention_head_dim'] = 32 |
|
config_json['hidden_size'] = 64 |
|
config_json['intermediate_size'] = 128 |
|
config_json['moe_intermediate_size'] = [128, 128] |
|
config_json['moe_topk'] = [2, 2] |
|
config_json['num_attention_heads'] = 2 |
|
config_json['num_experts'] = 8 |
|
config_json['num_hidden_layers'] = 2 |
|
config_json['num_key_value_heads'] = 1 |
|
config_json['num_shared_expert'] = [1, 1] |
|
config_json['tie_word_embeddings'] = True |
|
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
automap = config_json['auto_map'] |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
print(model) |
|
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['auto_map'] = automap |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
for python_file in Path(save_folder).glob('*.py'): |
|
if python_file.name.startswith('modeling_') or python_file.name.startswith('configuration_'): |
|
python_file.unlink() |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
HunYuanMoEV1ForCausalLM( |
|
(model): HunYuanModel( |
|
(embed_tokens): Embedding(128167, 64, padding_idx=127961) |
|
(layers): ModuleList( |
|
(0-1): 2 x HunYuanDecoderLayer( |
|
(self_attn): HunYuanSdpaAttention( |
|
(q_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(k_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(v_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(o_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(query_layernorm): HunYuanRMSNorm() |
|
(key_layernorm): HunYuanRMSNorm() |
|
(rotary_emb): HunYuanDynamicNTKAlphaRotaryEmbedding() |
|
) |
|
(mlp): HunYuanMoE( |
|
(shared_mlp): HunYuanMLP( |
|
(gate_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(up_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(down_proj): Linear(in_features=128, out_features=64, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
(gate): HunYuanTopKGate( |
|
(wg): Linear(in_features=64, out_features=8, bias=False) |
|
) |
|
(experts): ModuleList( |
|
(0-7): 8 x HunYuanMLP( |
|
(gate_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(up_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(down_proj): Linear(in_features=128, out_features=64, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
) |
|
) |
|
(input_layernorm): HunYuanRMSNorm() |
|
(post_attention_layernorm): HunYuanRMSNorm() |
|
) |
|
) |
|
(norm): HunYuanRMSNorm() |
|
) |
|
(lm_head): Linear(in_features=64, out_features=128167, bias=False) |
|
) |
|
``` |