File size: 29,755 Bytes
0cb6d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:10000
- loss:MultipleNegativesRankingLoss
base_model: openai/clip-vit-large-patch14
widget:
- source_sentence: A man standing next to a little girl riding a horse.
  sentences:
  - The woman is working on her computer at the desk.
  - A young man holding an umbrella next to a herd of cattle.
  - 'a person sitting at a desk with a keyboard and monitor '
- source_sentence: 'A car at an intersection while a man is crossing the street. '
  sentences:
  - A plane that is flying in the air.
  - a small girl sitting on a chair holding a white bear
  - A young toddler walks across the grass in a park.
- source_sentence: A lady riding her bicycle on the side of a street.
  sentences:
  - Flowers hang from a small decorative post in a yard.
  - Flowers in a clear vase sitting on a table.
  - The toilet is near the door in the bathroom.
- source_sentence: 'A group of zebras standing beside each other in the desert. '
  sentences:
  - The bathroom is clean and ready for us to use.
  - A woman throwing a frisbee as a child looks on.
  - a bird with a pink eye is sitting on a branch in the woods.
- source_sentence: A large desk by a window is neatly arranged.
  sentences:
  - An old toilet sits in dirt with a helmet on top.
  - A lady sitting at an enormous dining table with lots of food.
  - A long hot dog on a plate on a table.
datasets:
- jxie/coco_captions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
  emissions: 11.59757010411656
  energy_consumed: 0.04333563796741882
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.137
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CLIP ViT-L/14 model trained on COCO Captions
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: coco eval
      type: coco-eval
    metrics:
    - type: cosine_accuracy@1
      value: 0.799
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.968
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.991
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.995
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.799
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3226666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19820000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09950000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.799
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.968
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.991
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.995
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9112246370033859
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8827011904761911
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8828050771692076
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: coco test
      type: coco-test
    metrics:
    - type: cosine_accuracy@1
      value: 0.776
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.959
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.986
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.995
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.776
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31966666666666665
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19720000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09950000000000003
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.776
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.959
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.986
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.995
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8996790966052481
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8674440476190487
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8678233839689722
      name: Cosine Map@100
---


# CLIP ViT-L/14 model trained on COCO Captions

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on the [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) <!-- at revision 32bd64288804d66eefd0ccbe215aa642df71cc41 -->
- **Maximum Sequence Length:** None tokens
- **Output Dimensionality:** None dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [coco_captions](https://huggingface.co/datasets/jxie/coco_captions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'image': {'method': 'get_image_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'CLIPModel'})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/clip-vit-L14-coco")

# Run inference

sentences = [

    'A large desk by a window is neatly arranged.',

    'A long hot dog on a plate on a table.',

    'A lady sitting at an enormous dining table with lots of food.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 1024]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities)

# tensor([[ 1.0000, -0.0302,  0.1619],

#         [-0.0302,  1.0000,  0.1578],

#         [ 0.1619,  0.1578,  1.0000]])

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `coco-eval` and `coco-test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | coco-eval  | coco-test  |
|:--------------------|:-----------|:-----------|
| cosine_accuracy@1   | 0.799      | 0.776      |

| cosine_accuracy@3   | 0.968      | 0.959      |
| cosine_accuracy@5   | 0.991      | 0.986      |

| cosine_accuracy@10  | 0.995      | 0.995      |
| cosine_precision@1  | 0.799      | 0.776      |

| cosine_precision@3  | 0.3227     | 0.3197     |
| cosine_precision@5  | 0.1982     | 0.1972     |

| cosine_precision@10 | 0.0995     | 0.0995     |
| cosine_recall@1     | 0.799      | 0.776      |

| cosine_recall@3     | 0.968      | 0.959      |
| cosine_recall@5     | 0.991      | 0.986      |

| cosine_recall@10    | 0.995      | 0.995      |
| **cosine_ndcg@10**  | **0.9112** | **0.8997** |

| cosine_mrr@10       | 0.8827     | 0.8674     |

| cosine_map@100      | 0.8828     | 0.8678     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### coco_captions



* Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)

* Size: 10,000 training samples

* Columns: <code>image</code> and <code>caption</code>

* Approximate statistics based on the first 1000 samples:

  |         | image                             | caption                                                                                         |

  |:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|

  | type    | PIL.JpegImagePlugin.JpegImageFile | string                                                                                          |

  | details | <ul><li></li></ul>                | <ul><li>min: 28 characters</li><li>mean: 52.56 characters</li><li>max: 156 characters</li></ul> |

* Samples:

  | image                                                                                         | caption                                                             |

  |:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|

  | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x1E8E850FDD0></code> | <code>A woman wearing a net on her head cutting a cake. </code>     |

  | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x1E8E8550590></code> | <code>A woman cutting a large white sheet cake.</code>              |

  | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x1E8E8563F50></code> | <code>A woman wearing a hair net cutting a large sheet cake.</code> |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim",

      "gather_across_devices": false

  }

  ```



### Evaluation Dataset



#### coco_captions



* Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)

* Size: 1,000 evaluation samples

* Columns: <code>image</code> and <code>caption</code>

* Approximate statistics based on the first 1000 samples:

  |         | image                             | caption                                                                                         |

  |:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|

  | type    | PIL.JpegImagePlugin.JpegImageFile | string                                                                                          |

  | details | <ul><li></li></ul>                | <ul><li>min: 27 characters</li><li>mean: 52.45 characters</li><li>max: 151 characters</li></ul> |

* Samples:

  | image                                                                                         | caption                                                                          |

  |:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|

  | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x1E8E82F5710></code> | <code>A child holding a flowered umbrella and petting a yak.</code>              |

  | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x1E8E8532B10></code> | <code>A young man holding an umbrella next to a herd of cattle.</code>           |

  | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x1E8E833CFD0></code> | <code>a young boy barefoot holding an umbrella touching the horn of a cow</code> |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim",

      "gather_across_devices": false

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `bf16`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `use_cpu`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `bf16`: True

- `fp16`: False

- `half_precision_backend`: None

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `parallelism_config`: None

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch_fused

- `optim_args`: None

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `hub_revision`: None

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_for_metrics`: []

- `eval_do_concat_batches`: True

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: no

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `liger_kernel_config`: None

- `eval_use_gather_object`: False

- `average_tokens_across_devices`: True

- `prompts`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

- `router_mapping`: {}

- `learning_rate_mapping`: {}



</details>



### Training Logs

| Epoch  | Step | Training Loss | Validation Loss | coco-eval_cosine_ndcg@10 | coco-test_cosine_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------------:|

| -1     | -1   | -             | -               | 0.8902                   | -                        |

| 0.0112 | 7    | 0.4782        | -               | -                        | -                        |

| 0.0224 | 14   | 0.3108        | -               | -                        | -                        |

| 0.0336 | 21   | 0.2212        | -               | -                        | -                        |

| 0.0448 | 28   | 0.1612        | -               | -                        | -                        |

| 0.056  | 35   | 0.1853        | -               | -                        | -                        |

| 0.0672 | 42   | 0.0811        | -               | -                        | -                        |

| 0.0784 | 49   | 0.0785        | -               | -                        | -                        |

| 0.0896 | 56   | 0.1022        | -               | -                        | -                        |

| 0.1008 | 63   | 0.0927        | 0.1433          | 0.9189                   | -                        |

| 0.112  | 70   | 0.112         | -               | -                        | -                        |

| 0.1232 | 77   | 0.1072        | -               | -                        | -                        |

| 0.1344 | 84   | 0.1272        | -               | -                        | -                        |

| 0.1456 | 91   | 0.1176        | -               | -                        | -                        |

| 0.1568 | 98   | 0.1361        | -               | -                        | -                        |

| 0.168  | 105  | 0.1281        | -               | -                        | -                        |

| 0.1792 | 112  | 0.0961        | -               | -                        | -                        |

| 0.1904 | 119  | 0.1038        | -               | -                        | -                        |

| 0.2016 | 126  | 0.1019        | 0.1506          | 0.8929                   | -                        |

| 0.2128 | 133  | 0.0657        | -               | -                        | -                        |

| 0.224  | 140  | 0.1187        | -               | -                        | -                        |

| 0.2352 | 147  | 0.0752        | -               | -                        | -                        |

| 0.2464 | 154  | 0.2314        | -               | -                        | -                        |

| 0.2576 | 161  | 0.0806        | -               | -                        | -                        |

| 0.2688 | 168  | 0.1243        | -               | -                        | -                        |

| 0.28   | 175  | 0.1179        | -               | -                        | -                        |

| 0.2912 | 182  | 0.1174        | -               | -                        | -                        |

| 0.3024 | 189  | 0.0926        | 0.1604          | 0.8907                   | -                        |

| 0.3136 | 196  | 0.1327        | -               | -                        | -                        |

| 0.3248 | 203  | 0.0861        | -               | -                        | -                        |

| 0.336  | 210  | 0.0677        | -               | -                        | -                        |

| 0.3472 | 217  | 0.1296        | -               | -                        | -                        |

| 0.3584 | 224  | 0.1322        | -               | -                        | -                        |

| 0.3696 | 231  | 0.1555        | -               | -                        | -                        |

| 0.3808 | 238  | 0.0807        | -               | -                        | -                        |

| 0.392  | 245  | 0.1134        | -               | -                        | -                        |

| 0.4032 | 252  | 0.1826        | 0.1712          | 0.8840                   | -                        |

| 0.4144 | 259  | 0.1796        | -               | -                        | -                        |

| 0.4256 | 266  | 0.186         | -               | -                        | -                        |

| 0.4368 | 273  | 0.0971        | -               | -                        | -                        |

| 0.448  | 280  | 0.063         | -               | -                        | -                        |

| 0.4592 | 287  | 0.1344        | -               | -                        | -                        |

| 0.4704 | 294  | 0.072         | -               | -                        | -                        |

| 0.4816 | 301  | 0.1233        | -               | -                        | -                        |

| 0.4928 | 308  | 0.1152        | -               | -                        | -                        |

| 0.504  | 315  | 0.148         | 0.1565          | 0.8960                   | -                        |

| 0.5152 | 322  | 0.0836        | -               | -                        | -                        |

| 0.5264 | 329  | 0.1171        | -               | -                        | -                        |

| 0.5376 | 336  | 0.1433        | -               | -                        | -                        |

| 0.5488 | 343  | 0.0494        | -               | -                        | -                        |

| 0.56   | 350  | 0.1533        | -               | -                        | -                        |

| 0.5712 | 357  | 0.0773        | -               | -                        | -                        |

| 0.5824 | 364  | 0.0921        | -               | -                        | -                        |

| 0.5936 | 371  | 0.0546        | -               | -                        | -                        |

| 0.6048 | 378  | 0.1444        | 0.1496          | 0.9001                   | -                        |

| 0.616  | 385  | 0.0956        | -               | -                        | -                        |

| 0.6272 | 392  | 0.0445        | -               | -                        | -                        |

| 0.6384 | 399  | 0.0939        | -               | -                        | -                        |

| 0.6496 | 406  | 0.1109        | -               | -                        | -                        |

| 0.6608 | 413  | 0.0466        | -               | -                        | -                        |

| 0.672  | 420  | 0.0627        | -               | -                        | -                        |

| 0.6832 | 427  | 0.0857        | -               | -                        | -                        |

| 0.6944 | 434  | 0.058         | -               | -                        | -                        |

| 0.7056 | 441  | 0.1542        | 0.1443          | 0.9031                   | -                        |

| 0.7168 | 448  | 0.0972        | -               | -                        | -                        |

| 0.728  | 455  | 0.0892        | -               | -                        | -                        |

| 0.7392 | 462  | 0.0819        | -               | -                        | -                        |

| 0.7504 | 469  | 0.0838        | -               | -                        | -                        |

| 0.7616 | 476  | 0.0754        | -               | -                        | -                        |

| 0.7728 | 483  | 0.0754        | -               | -                        | -                        |

| 0.784  | 490  | 0.0638        | -               | -                        | -                        |

| 0.7952 | 497  | 0.1006        | -               | -                        | -                        |

| 0.8064 | 504  | 0.0398        | 0.1429          | 0.9122                   | -                        |

| 0.8176 | 511  | 0.1562        | -               | -                        | -                        |

| 0.8288 | 518  | 0.1039        | -               | -                        | -                        |

| 0.84   | 525  | 0.0342        | -               | -                        | -                        |

| 0.8512 | 532  | 0.0467        | -               | -                        | -                        |

| 0.8624 | 539  | 0.0703        | -               | -                        | -                        |

| 0.8736 | 546  | 0.0655        | -               | -                        | -                        |

| 0.8848 | 553  | 0.0216        | -               | -                        | -                        |

| 0.896  | 560  | 0.029         | -               | -                        | -                        |

| 0.9072 | 567  | 0.0588        | 0.1530          | 0.9112                   | -                        |

| 0.9184 | 574  | 0.1145        | -               | -                        | -                        |

| 0.9296 | 581  | 0.0652        | -               | -                        | -                        |

| 0.9408 | 588  | 0.0556        | -               | -                        | -                        |

| 0.952  | 595  | 0.0458        | -               | -                        | -                        |

| 0.9632 | 602  | 0.0085        | -               | -                        | -                        |

| 0.9744 | 609  | 0.0572        | -               | -                        | -                        |

| 0.9856 | 616  | 0.0942        | -               | -                        | -                        |

| 0.9968 | 623  | 0.109         | -               | -                        | -                        |

| -1     | -1   | -             | -               | -                        | 0.8997                   |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.043 kWh

- **Carbon Emitted**: 0.012 kg of CO2

- **Hours Used**: 0.137 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 5.2.0.dev0

- Transformers: 4.57.0.dev0

- PyTorch: 2.8.0+cu128

- Accelerate: 1.6.0

- Datasets: 3.6.0

- Tokenizers: 0.22.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->