tomaarsen HF Staff commited on
Commit
c50cbe7
·
verified ·
1 Parent(s): 0cb6d4b

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +101 -0
train_script.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ from datasets import load_dataset
4
+
5
+ from sentence_transformers import (
6
+ SentenceTransformer,
7
+ SentenceTransformerModelCardData,
8
+ SentenceTransformerTrainer,
9
+ SentenceTransformerTrainingArguments,
10
+ )
11
+ from sentence_transformers.evaluation import InformationRetrievalEvaluator
12
+ from sentence_transformers.losses import MultipleNegativesRankingLoss
13
+ from sentence_transformers.training_args import BatchSamplers
14
+ import logging
15
+
16
+ logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
17
+ logging.getLogger("httpx").setLevel(logging.WARNING)
18
+
19
+ # 1. Load a model to finetune with 2. (Optional) model card data
20
+ model = SentenceTransformer(
21
+ "openai/clip-vit-large-patch14",
22
+ model_card_data=SentenceTransformerModelCardData(
23
+ language="en",
24
+ license="apache-2.0",
25
+ model_name="CLIP ViT-L/14 model trained on COCO Captions",
26
+ ),
27
+ )
28
+
29
+ # 3. Load a dataset to finetune on
30
+ dataset = load_dataset("jxie/coco_captions")
31
+ train_dataset = dataset["train"].select(range(10_000))
32
+ eval_dataset = dataset["validation"].select(range(1_000))
33
+ test_dataset = dataset["test"].select(range(1_000))
34
+
35
+ # 4. Define a loss function
36
+ loss = MultipleNegativesRankingLoss(model)
37
+
38
+ # 5. (Optional) Specify training arguments
39
+ run_name = "clip-vit-L14-coco"
40
+ args = SentenceTransformerTrainingArguments(
41
+ # Required parameter:
42
+ output_dir=f"models/{run_name}",
43
+ # Optional training parameters:
44
+ num_train_epochs=1,
45
+ per_device_train_batch_size=16,
46
+ per_device_eval_batch_size=16,
47
+ learning_rate=2e-5,
48
+ warmup_ratio=0.1,
49
+ fp16=False, # Set to False if you get an error that your GPU can't run on FP16
50
+ bf16=True, # Set to True if you have a GPU that supports BF16
51
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
52
+ # Optional tracking/debugging parameters:
53
+ eval_strategy="steps",
54
+ eval_steps=0.1,
55
+ save_strategy="steps",
56
+ save_steps=0.1,
57
+ save_total_limit=2,
58
+ logging_steps=0.01,
59
+ run_name=run_name, # Will be used in W&B if `wandb` is installed
60
+ )
61
+
62
+ # 6. (Optional) Create an evaluator & evaluate the base model
63
+ eval_queries = {qid: sample["caption"] for qid, sample in enumerate(eval_dataset)}
64
+ eval_corpus = {sample["cocoid"]: sample["image"] for sample in eval_dataset}
65
+ eval_relevant_docs = {qid: [sample["cocoid"]] for qid, sample in enumerate(eval_dataset)}
66
+ eval_evaluator = InformationRetrievalEvaluator(
67
+ queries=eval_queries,
68
+ corpus=eval_corpus,
69
+ relevant_docs=eval_relevant_docs,
70
+ name="coco-eval",
71
+ )
72
+ eval_evaluator(model)
73
+
74
+ # 7. Create a trainer & train
75
+ trainer = SentenceTransformerTrainer(
76
+ model=model,
77
+ args=args,
78
+ train_dataset=train_dataset.select_columns(["image", "caption"]),
79
+ eval_dataset=eval_dataset.select_columns(["image", "caption"]),
80
+ loss=loss,
81
+ evaluator=eval_evaluator,
82
+ )
83
+ trainer.train()
84
+
85
+ # (Optional) Evaluate the trained model on the test set
86
+ test_queries = {qid: sample["caption"] for qid, sample in enumerate(test_dataset)}
87
+ test_corpus = {sample["cocoid"]: sample["image"] for sample in test_dataset}
88
+ test_relevant_docs = {qid: [sample["cocoid"]] for qid, sample in enumerate(test_dataset)}
89
+ test_evaluator = InformationRetrievalEvaluator(
90
+ queries=test_queries,
91
+ corpus=test_corpus,
92
+ relevant_docs=test_relevant_docs,
93
+ name="coco-test",
94
+ )
95
+ test_evaluator(model)
96
+
97
+ # 8. Save the trained model
98
+ model.save_pretrained(f"models/{run_name}/final")
99
+
100
+ # 9. (Optional) Push it to the Hugging Face Hub
101
+ model.push_to_hub(run_name, private=True)