metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:3011496
- loss:SpladeLoss
base_model: distilbert/distilbert-base-uncased
widget:
- source_sentence: how much percent of alcohol is in scotch?
sentences:
- >-
Our 24-hour day comes from the ancient Egyptians who divided day-time
into 10 hours they measured with devices such as shadow clocks, and
added a twilight hour at the beginning and another one at the end of the
day-time, says Lomb. "Night-time was divided in 12 hours, based on the
observations of stars.
- >-
After distillation, a Scotch Whisky can be anywhere between 60-75% ABV,
with American Whiskey rocketing right into the 90% region. Before being
placed in casks, Scotch is usually diluted to around 63.5% ABV (68% for
grain); welcome to the stage cask strength Whisky.
- >-
Money For Nothing. In season four Dominic West, the ostensible star of
the series, requested a reduced role so that he could spend more time
with his family in London. On the show it was explained that Jimmy
McNulty had taken a patrol job which required less strenuous work.
- source_sentence: what are the major causes of poor listening?
sentences:
- >-
The four main causes of poor listening are due to not concentrating,
listening too hard, jumping to conclusions and focusing on delivery and
personal appearance. Sometimes we just don't feel attentive enough and
hence don't concentrate.
- >-
That's called being idle. “System Idle Process” is the software that
runs when the computer has absolutely nothing better to do. It has the
lowest possible priority and uses as few resources as possible, so that
if anything at all comes along for the CPU to work on, it can.
- >-
No alcohol wine: how it's made It's not easy. There are three main
methods currently in use. Vacuum distillation sees alcohol and other
volatiles removed at a relatively low temperature (25°C-30°C), with
aromatics blended back in afterwards.
- source_sentence: are jess and justin still together?
sentences:
- >-
Download photos and videos to your device On your iPhone, iPad, or iPod
touch, tap Settings > [your name] > iCloud > Photos. Then select
Download and Keep Originals and import the photos to your computer. On
your Mac, open the Photos app. Select the photos and videos you want to
copy.
- >-
Later, Justin reunites with Jessica at prom and the two get back
together. ... After a tearful goodbye to Jessica, the Jensens, and his
friends, Justin dies just before graduation.
- >-
Incumbent president Muhammadu Buhari won his reelection bid, defeating
his closest rival Atiku Abubakar by over 3 million votes. He was issued
a Certificate of Return, and was sworn in on May 29, 2019, the former
date of Democracy Day (Nigeria).
- source_sentence: when humans are depicted in hindu art?
sentences:
- >-
Answer: Humans are depicted in Hindu art often in sensuous and erotic
postures.
- >-
Bettas are carnivores. They require foods high in animal protein. Their
preferred diet in nature includes insects and insect larvae. In
captivity, they thrive on a varied diet of pellets or flakes made from
fish meal, as well as frozen or freeze-dried bloodworms.
- >-
An active continental margin is found on the leading edge of the
continent where it is crashing into an oceanic plate. ... Passive
continental margins are found along the remaining coastlines.
- source_sentence: what is the difference between 18 and 20 inch tires?
sentences:
- >-
['Alienware m17 R3. The best gaming laptop overall offers big power in
slim, redesigned chassis. ... ', 'Dell G3 15. ... ', 'Asus ROG Zephyrus
G14. ... ', 'Lenovo Legion Y545. ... ', 'Alienware Area 51m. ... ',
'Asus ROG Mothership. ... ', 'Asus ROG Strix Scar III. ... ', 'HP Omen
17 (2019)']
- >-
So extracurricular activities are just activities that you do outside of
class. The Common App says that extracurricular activities "include
arts, athletics, clubs, employment, personal commitments, and other
pursuits."
- >-
The only real difference is a 20" rim would be more likely to be
damaged, as you pointed out. Beyond looks, there is zero benefit for the
20" rim. Also, just the availability of tires will likely be much more
limited for the larger rim. ... Tire selection is better for 18" wheels
than 20" wheels.
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
co2_eq_emissions:
emissions: 520.0942452560889
energy_consumed: 1.3380282202203462
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 3.894
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: splade-distilbert-base-uncased trained on GooAQ
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.38
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.48
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.54
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.13333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.10800000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.066
name: Dot Precision@10
- type: dot_recall@1
value: 0.11666666666666665
name: Dot Recall@1
- type: dot_recall@3
value: 0.17066666666666663
name: Dot Recall@3
- type: dot_recall@5
value: 0.21566666666666662
name: Dot Recall@5
- type: dot_recall@10
value: 0.254
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2261790676778388
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3172460317460317
name: Dot Mrr@10
- type: dot_map@100
value: 0.18142380833103508
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.52
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.68
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.86
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.52
name: Dot Precision@1
- type: dot_precision@3
value: 0.42666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.39599999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.3600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.04167451005436889
name: Dot Recall@1
- type: dot_recall@3
value: 0.11687345791837826
name: Dot Recall@3
- type: dot_recall@5
value: 0.1514949553474152
name: Dot Recall@5
- type: dot_recall@10
value: 0.24492588020184664
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4347755184129968
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6113253968253968
name: Dot Mrr@10
- type: dot_map@100
value: 0.3307600412459809
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.68
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.92
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.94
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.68
name: Dot Precision@1
- type: dot_precision@3
value: 0.3066666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.18799999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.6566666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.8566666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.8766666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.9166666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8076442104958218
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7872222222222223
name: Dot Mrr@10
- type: dot_map@100
value: 0.7674244773257931
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.34
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.68
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.34
name: Dot Precision@1
- type: dot_precision@3
value: 0.2733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.19199999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.12
name: Dot Precision@10
- type: dot_recall@1
value: 0.1459126984126984
name: Dot Recall@1
- type: dot_recall@3
value: 0.36649206349206354
name: Dot Recall@3
- type: dot_recall@5
value: 0.39607142857142863
name: Dot Recall@5
- type: dot_recall@10
value: 0.5118174603174603
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.40298090899579636
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4699365079365079
name: Dot Mrr@10
- type: dot_map@100
value: 0.32554676606566874
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.74
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.92
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.96
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.74
name: Dot Precision@1
- type: dot_precision@3
value: 0.44666666666666655
name: Dot Precision@3
- type: dot_precision@5
value: 0.3
name: Dot Precision@5
- type: dot_precision@10
value: 0.158
name: Dot Precision@10
- type: dot_recall@1
value: 0.37
name: Dot Recall@1
- type: dot_recall@3
value: 0.67
name: Dot Recall@3
- type: dot_recall@5
value: 0.75
name: Dot Recall@5
- type: dot_recall@10
value: 0.79
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.735492134090369
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8236666666666668
name: Dot Mrr@10
- type: dot_map@100
value: 0.6711040184164847
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.26
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.26
name: Dot Precision@1
- type: dot_precision@3
value: 0.13999999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.11200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.07800000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.26
name: Dot Recall@1
- type: dot_recall@3
value: 0.42
name: Dot Recall@3
- type: dot_recall@5
value: 0.56
name: Dot Recall@5
- type: dot_recall@10
value: 0.78
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.48566582103432865
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.39584126984126977
name: Dot Mrr@10
- type: dot_map@100
value: 0.4043469063460482
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.4
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.66
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4
name: Dot Precision@1
- type: dot_precision@3
value: 0.34
name: Dot Precision@3
- type: dot_precision@5
value: 0.316
name: Dot Precision@5
- type: dot_precision@10
value: 0.24999999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.02367568043139258
name: Dot Recall@1
- type: dot_recall@3
value: 0.07666946243603708
name: Dot Recall@3
- type: dot_recall@5
value: 0.09651550012847633
name: Dot Recall@5
- type: dot_recall@10
value: 0.11965782081153208
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3006693982141158
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.48066666666666663
name: Dot Mrr@10
- type: dot_map@100
value: 0.130037101713329
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333335
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.36
name: Dot Recall@1
- type: dot_recall@3
value: 0.57
name: Dot Recall@3
- type: dot_recall@5
value: 0.66
name: Dot Recall@5
- type: dot_recall@10
value: 0.77
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5618580490206411
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5104126984126982
name: Dot Mrr@10
- type: dot_map@100
value: 0.49679904702760114
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.82
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.96
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.82
name: Dot Precision@1
- type: dot_precision@3
value: 0.3733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.23599999999999993
name: Dot Precision@5
- type: dot_precision@10
value: 0.13199999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.7340000000000001
name: Dot Recall@1
- type: dot_recall@3
value: 0.9113333333333332
name: Dot Recall@3
- type: dot_recall@5
value: 0.922
name: Dot Recall@5
- type: dot_recall@10
value: 0.9833333333333333
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9062363336812763
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8922222222222222
name: Dot Mrr@10
- type: dot_map@100
value: 0.8721868432072424
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.24
name: Dot Precision@3
- type: dot_precision@5
value: 0.188
name: Dot Precision@5
- type: dot_precision@10
value: 0.148
name: Dot Precision@10
- type: dot_recall@1
value: 0.08066666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.14966666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.19466666666666665
name: Dot Recall@5
- type: dot_recall@10
value: 0.3036666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.29127983049304745
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4865
name: Dot Mrr@10
- type: dot_map@100
value: 0.21683445069332832
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.1
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.1
name: Dot Precision@1
- type: dot_precision@3
value: 0.15999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.11599999999999999
name: Dot Precision@5
- type: dot_precision@10
value: 0.07200000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.1
name: Dot Recall@1
- type: dot_recall@3
value: 0.48
name: Dot Recall@3
- type: dot_recall@5
value: 0.58
name: Dot Recall@5
- type: dot_recall@10
value: 0.72
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4187747413908095
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.32185714285714284
name: Dot Mrr@10
- type: dot_map@100
value: 0.3357998070888097
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.54
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.54
name: Dot Precision@1
- type: dot_precision@3
value: 0.2333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.15600000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.08799999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.505
name: Dot Recall@1
- type: dot_recall@3
value: 0.635
name: Dot Recall@3
- type: dot_recall@5
value: 0.69
name: Dot Recall@5
- type: dot_recall@10
value: 0.77
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6442911439119196
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.616
name: Dot Mrr@10
- type: dot_map@100
value: 0.603482712383199
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.6530612244897959
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8979591836734694
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8979591836734694
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9795918367346939
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6530612244897959
name: Dot Precision@1
- type: dot_precision@3
value: 0.6326530612244898
name: Dot Precision@3
- type: dot_precision@5
value: 0.5346938775510205
name: Dot Precision@5
- type: dot_precision@10
value: 0.46122448979591835
name: Dot Precision@10
- type: dot_recall@1
value: 0.045158988646388926
name: Dot Recall@1
- type: dot_recall@3
value: 0.13170444661082067
name: Dot Recall@3
- type: dot_recall@5
value: 0.1831114698285018
name: Dot Recall@5
- type: dot_recall@10
value: 0.29974279420697125
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5207054661668302
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7654680919987042
name: Dot Mrr@10
- type: dot_map@100
value: 0.3842460294701173
name: Dot Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.4640816326530612
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6613814756671901
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7152276295133438
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8061224489795917
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4640816326530612
name: Dot Precision@1
- type: dot_precision@3
value: 0.3014861329147044
name: Dot Precision@3
- type: dot_precision@5
value: 0.2300533751962324
name: Dot Precision@5
- type: dot_precision@10
value: 0.16301726844583989
name: Dot Precision@10
- type: dot_recall@1
value: 0.26457091365729607
name: Dot Recall@1
- type: dot_recall@3
value: 0.42731328952235625
name: Dot Recall@3
- type: dot_recall@5
value: 0.482784104144294
name: Dot Recall@5
- type: dot_recall@10
value: 0.5741392786311136
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5181963556604454
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5752588397996561
name: Dot Mrr@10
- type: dot_map@100
value: 0.4399993853318952
name: Dot Map@100
splade-distilbert-base-uncased trained on GooAQ
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-gooaq")
# Run inference
sentences = [
'what is the difference between 18 and 20 inch tires?',
'The only real difference is a 20" rim would be more likely to be damaged, as you pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the availability of tires will likely be much more limited for the larger rim. ... Tire selection is better for 18" wheels than 20" wheels.',
'So extracurricular activities are just activities that you do outside of class. The Common App says that extracurricular activities "include arts, athletics, clubs, employment, personal commitments, and other pursuits."',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.22 | 0.52 | 0.68 | 0.34 | 0.74 | 0.26 | 0.4 | 0.38 | 0.82 | 0.38 | 0.1 | 0.54 | 0.6531 |
dot_accuracy@3 | 0.38 | 0.68 | 0.9 | 0.6 | 0.9 | 0.42 | 0.56 | 0.6 | 0.96 | 0.56 | 0.48 | 0.66 | 0.898 |
dot_accuracy@5 | 0.48 | 0.72 | 0.92 | 0.6 | 0.92 | 0.56 | 0.62 | 0.7 | 0.96 | 0.62 | 0.58 | 0.72 | 0.898 |
dot_accuracy@10 | 0.54 | 0.86 | 0.94 | 0.68 | 0.96 | 0.78 | 0.66 | 0.82 | 1.0 | 0.76 | 0.72 | 0.78 | 0.9796 |
dot_precision@1 | 0.22 | 0.52 | 0.68 | 0.34 | 0.74 | 0.26 | 0.4 | 0.38 | 0.82 | 0.38 | 0.1 | 0.54 | 0.6531 |
dot_precision@3 | 0.1333 | 0.4267 | 0.3067 | 0.2733 | 0.4467 | 0.14 | 0.34 | 0.2133 | 0.3733 | 0.24 | 0.16 | 0.2333 | 0.6327 |
dot_precision@5 | 0.108 | 0.396 | 0.188 | 0.192 | 0.3 | 0.112 | 0.316 | 0.148 | 0.236 | 0.188 | 0.116 | 0.156 | 0.5347 |
dot_precision@10 | 0.066 | 0.36 | 0.1 | 0.12 | 0.158 | 0.078 | 0.25 | 0.086 | 0.132 | 0.148 | 0.072 | 0.088 | 0.4612 |
dot_recall@1 | 0.1167 | 0.0417 | 0.6567 | 0.1459 | 0.37 | 0.26 | 0.0237 | 0.36 | 0.734 | 0.0807 | 0.1 | 0.505 | 0.0452 |
dot_recall@3 | 0.1707 | 0.1169 | 0.8567 | 0.3665 | 0.67 | 0.42 | 0.0767 | 0.57 | 0.9113 | 0.1497 | 0.48 | 0.635 | 0.1317 |
dot_recall@5 | 0.2157 | 0.1515 | 0.8767 | 0.3961 | 0.75 | 0.56 | 0.0965 | 0.66 | 0.922 | 0.1947 | 0.58 | 0.69 | 0.1831 |
dot_recall@10 | 0.254 | 0.2449 | 0.9167 | 0.5118 | 0.79 | 0.78 | 0.1197 | 0.77 | 0.9833 | 0.3037 | 0.72 | 0.77 | 0.2997 |
dot_ndcg@10 | 0.2262 | 0.4348 | 0.8076 | 0.403 | 0.7355 | 0.4857 | 0.3007 | 0.5619 | 0.9062 | 0.2913 | 0.4188 | 0.6443 | 0.5207 |
dot_mrr@10 | 0.3172 | 0.6113 | 0.7872 | 0.4699 | 0.8237 | 0.3958 | 0.4807 | 0.5104 | 0.8922 | 0.4865 | 0.3219 | 0.616 | 0.7655 |
dot_map@100 | 0.1814 | 0.3308 | 0.7674 | 0.3255 | 0.6711 | 0.4043 | 0.13 | 0.4968 | 0.8722 | 0.2168 | 0.3358 | 0.6035 | 0.3842 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4641 |
dot_accuracy@3 | 0.6614 |
dot_accuracy@5 | 0.7152 |
dot_accuracy@10 | 0.8061 |
dot_precision@1 | 0.4641 |
dot_precision@3 | 0.3015 |
dot_precision@5 | 0.2301 |
dot_precision@10 | 0.163 |
dot_recall@1 | 0.2646 |
dot_recall@3 | 0.4273 |
dot_recall@5 | 0.4828 |
dot_recall@10 | 0.5741 |
dot_ndcg@10 | 0.5182 |
dot_mrr@10 | 0.5753 |
dot_map@100 | 0.44 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,011,496 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 18 characters
- mean: 43.42 characters
- max: 96 characters
- min: 54 characters
- mean: 252.96 characters
- max: 426 characters
- Samples:
question answer what is the difference between clay and mud mask?
The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.
myki how much on card?
A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.
how to find out if someone blocked your phone number on iphone?
If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.
- Loss:
SpladeLoss
with these parameters:{'loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) ), 'query_regularizer': FlopsLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) )}
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 18 characters
- mean: 43.17 characters
- max: 98 characters
- min: 51 characters
- mean: 254.12 characters
- max: 360 characters
- Samples:
question answer how do i program my directv remote with my tv?
['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
are rodrigues fruit bats nocturnal?
Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
why does your heart rate increase during exercise bbc bitesize?
During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
- Loss:
SpladeLoss
with these parameters:{'loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) ), 'query_regularizer': FlopsLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) )}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0213 | 2000 | 0.75 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0425 | 4000 | 0.071 | 0.0924 | 0.1931 | 0.2903 | 0.5966 | 0.3079 | 0.6182 | 0.3378 | 0.1867 | 0.3781 | 0.3784 | 0.1966 | 0.2325 | 0.4148 | 0.5139 | 0.3573 |
0.0638 | 6000 | 0.0578 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0850 | 8000 | 0.0511 | 0.0589 | 0.1826 | 0.2911 | 0.5719 | 0.3820 | 0.6818 | 0.2417 | 0.2032 | 0.2925 | 0.4541 | 0.2090 | 0.2306 | 0.5240 | 0.5183 | 0.3679 |
0.1063 | 10000 | 0.0464 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1275 | 12000 | 0.0458 | 0.0795 | 0.1978 | 0.2958 | 0.6206 | 0.3664 | 0.6673 | 0.2691 | 0.1872 | 0.2327 | 0.6770 | 0.2008 | 0.3288 | 0.5384 | 0.5017 | 0.3911 |
0.1488 | 14000 | 0.0427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1700 | 16000 | 0.0392 | 0.0581 | 0.2785 | 0.4104 | 0.8125 | 0.3832 | 0.7265 | 0.5093 | 0.2688 | 0.6075 | 0.7879 | 0.2760 | 0.3342 | 0.5722 | 0.5301 | 0.4998 |
0.1913 | 18000 | 0.039 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2125 | 20000 | 0.0366 | 0.0472 | 0.2319 | 0.3466 | 0.7349 | 0.3774 | 0.7174 | 0.4061 | 0.2189 | 0.4166 | 0.7486 | 0.2364 | 0.3560 | 0.5907 | 0.5211 | 0.4541 |
0.2338 | 22000 | 0.0312 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2550 | 24000 | 0.0322 | 0.0543 | 0.2169 | 0.4469 | 0.7618 | 0.4014 | 0.6831 | 0.4412 | 0.2707 | 0.5253 | 0.8104 | 0.2621 | 0.3581 | 0.6006 | 0.5037 | 0.4832 |
0.2763 | 26000 | 0.0292 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2975 | 28000 | 0.03 | 0.0529 | 0.2257 | 0.5070 | 0.7976 | 0.4014 | 0.7442 | 0.5165 | 0.3216 | 0.5799 | 0.8483 | 0.3318 | 0.3206 | 0.5665 | 0.5149 | 0.5135 |
0.3188 | 30000 | 0.0294 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3400 | 32000 | 0.0291 | 0.0512 | 0.1754 | 0.4539 | 0.8196 | 0.3903 | 0.7372 | 0.4689 | 0.2948 | 0.5548 | 0.8643 | 0.2791 | 0.4040 | 0.5229 | 0.5055 | 0.4977 |
0.3613 | 34000 | 0.0284 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3825 | 36000 | 0.0268 | 0.0404 | 0.2566 | 0.4462 | 0.8142 | 0.3737 | 0.7281 | 0.4418 | 0.2568 | 0.5135 | 0.8305 | 0.2749 | 0.3775 | 0.5485 | 0.5228 | 0.4912 |
0.4038 | 38000 | 0.0262 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4250 | 40000 | 0.0238 | 0.0416 | 0.2464 | 0.5235 | 0.8004 | 0.4016 | 0.7418 | 0.4483 | 0.2915 | 0.5771 | 0.8538 | 0.2523 | 0.3536 | 0.6227 | 0.4967 | 0.5084 |
0.4463 | 42000 | 0.0253 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4675 | 44000 | 0.0224 | 0.0360 | 0.2080 | 0.5100 | 0.8317 | 0.3775 | 0.7223 | 0.4447 | 0.2789 | 0.5586 | 0.8324 | 0.3151 | 0.4005 | 0.6089 | 0.5119 | 0.5077 |
0.4888 | 46000 | 0.0225 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5100 | 48000 | 0.0209 | 0.0232 | 0.2386 | 0.5045 | 0.8204 | 0.3746 | 0.7390 | 0.4662 | 0.2963 | 0.5380 | 0.8580 | 0.3292 | 0.4010 | 0.6336 | 0.5214 | 0.5170 |
0.5313 | 50000 | 0.0225 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5525 | 52000 | 0.0205 | 0.0380 | 0.2237 | 0.5114 | 0.7952 | 0.3583 | 0.6979 | 0.4310 | 0.2816 | 0.5364 | 0.8747 | 0.2703 | 0.4009 | 0.5947 | 0.5038 | 0.4984 |
0.5738 | 54000 | 0.0204 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5950 | 56000 | 0.0204 | 0.0365 | 0.2316 | 0.4676 | 0.8134 | 0.3754 | 0.7280 | 0.4536 | 0.2927 | 0.5205 | 0.8662 | 0.2859 | 0.3589 | 0.6281 | 0.5069 | 0.5022 |
0.6163 | 58000 | 0.0199 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6376 | 60000 | 0.0196 | 0.0365 | 0.2233 | 0.4897 | 0.8149 | 0.3385 | 0.7395 | 0.4778 | 0.2725 | 0.5365 | 0.8610 | 0.2836 | 0.4031 | 0.5380 | 0.5146 | 0.4995 |
0.6588 | 62000 | 0.0187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6801 | 64000 | 0.0184 | 0.0453 | 0.2333 | 0.4792 | 0.7881 | 0.3653 | 0.7402 | 0.5062 | 0.3008 | 0.5607 | 0.8922 | 0.2857 | 0.4039 | 0.5972 | 0.5217 | 0.5134 |
0.7013 | 66000 | 0.0182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7226 | 68000 | 0.0162 | 0.0323 | 0.2341 | 0.4678 | 0.8283 | 0.3855 | 0.7567 | 0.5229 | 0.3297 | 0.5445 | 0.8909 | 0.2787 | 0.3917 | 0.5904 | 0.5115 | 0.5179 |
0.7438 | 70000 | 0.0195 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7651 | 72000 | 0.0181 | 0.0243 | 0.2082 | 0.4374 | 0.7487 | 0.4010 | 0.7245 | 0.4712 | 0.3179 | 0.5168 | 0.8721 | 0.2794 | 0.4312 | 0.5801 | 0.5129 | 0.5001 |
0.7863 | 74000 | 0.0171 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8076 | 76000 | 0.0164 | 0.0284 | 0.2153 | 0.4654 | 0.7985 | 0.4027 | 0.7528 | 0.4871 | 0.3267 | 0.5385 | 0.9092 | 0.2997 | 0.3852 | 0.5979 | 0.5001 | 0.5138 |
0.8288 | 78000 | 0.0169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8501 | 80000 | 0.0168 | 0.0244 | 0.2032 | 0.4466 | 0.7855 | 0.4042 | 0.7396 | 0.4971 | 0.2946 | 0.5485 | 0.9071 | 0.2983 | 0.3919 | 0.5862 | 0.5149 | 0.5091 |
0.8713 | 82000 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8926 | 84000 | 0.0155 | 0.0229 | 0.2262 | 0.4348 | 0.8076 | 0.403 | 0.7355 | 0.4857 | 0.3007 | 0.5619 | 0.9062 | 0.2913 | 0.4188 | 0.6443 | 0.5207 | 0.5182 |
0.9138 | 86000 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9351 | 88000 | 0.0149 | 0.0211 | 0.2259 | 0.4212 | 0.8098 | 0.3938 | 0.7309 | 0.4665 | 0.3051 | 0.5301 | 0.9061 | 0.2881 | 0.4086 | 0.6390 | 0.5199 | 0.5111 |
0.9563 | 90000 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9776 | 92000 | 0.0143 | 0.0231 | 0.2288 | 0.4224 | 0.8176 | 0.4130 | 0.7332 | 0.4807 | 0.3033 | 0.5424 | 0.9007 | 0.2772 | 0.4215 | 0.6354 | 0.5170 | 0.5149 |
0.9988 | 94000 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.2262 | 0.4348 | 0.8076 | 0.4030 | 0.7355 | 0.4857 | 0.3007 | 0.5619 | 0.9062 | 0.2913 | 0.4188 | 0.6443 | 0.5207 | 0.5182 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 1.338 kWh
- Carbon Emitted: 0.520 kg of CO2
- Hours Used: 3.894 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}