|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
``` |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
model_id = "facebook/opt-125m" |
|
|
|
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow |
|
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) |
|
|
|
quantization_config = TorchAoConfig(quant_type=quant_config) |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cuda", |
|
torch_dtype=torch.bfloat16, |
|
quantization_config=quantization_config, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
# Push to hub |
|
USER_ID = "torchao-testing" |
|
MODEL_NAME = model_id.split("/")[-1] |
|
save_to = f"{USER_ID}/{MODEL_NAME}-FP8-v2-0.13-dev" |
|
quantized_model.push_to_hub(save_to, safe_serialization=False) |
|
tokenizer.push_to_hub(save_to) |
|
|
|
# Manual Testing |
|
prompt = "Hey, are you conscious? Can you talk to me?" |
|
print("Prompt:", prompt) |
|
inputs = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
).to("cuda") |
|
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) |
|
output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", output_text[0][len(prompt) :]) |
|
``` |