|
``` |
|
model: opt-125m |
|
config: Int8DynamicActivationIntxWeightConfig |
|
config version: 2 |
|
torchao version: 0.14.dev |
|
``` |
|
|
|
``` |
|
import logging |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
# Configure logging to see warnings and debug information |
|
logging.basicConfig( |
|
level=logging.INFO, format="%(name)s - %(levelname)s - %(message)s" |
|
) |
|
|
|
# Enable specific loggers that might contain the serialization warnings |
|
logging.getLogger("transformers").setLevel(logging.INFO) |
|
logging.getLogger("torchao").setLevel(logging.INFO) |
|
logging.getLogger("safetensors").setLevel(logging.INFO) |
|
logging.getLogger("huggingface_hub").setLevel(logging.INFO) |
|
|
|
model_id = "facebook/opt-125m" |
|
|
|
from torchao.quantization import Int8DynamicActivationIntxWeightConfig |
|
from torchao.quantization.granularity import PerGroup |
|
|
|
version = 2 |
|
quant_config = Int8DynamicActivationIntxWeightConfig( |
|
weight_dtype=torch.int4, |
|
weight_granularity=PerGroup(32), |
|
version=version |
|
) |
|
quantization_config = TorchAoConfig(quant_type=quant_config) |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
quantization_config=quantization_config, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
# Push to hub |
|
MODEL_NAME = model_id.split("/")[-1] |
|
save_to = f"torchao-testing/{MODEL_NAME}-Int8DynamicActivationIntxWeightConfig-v{version}-0.14.0.dev-safetensors" |
|
quantized_model.push_to_hub(save_to, safe_serialization=False) |
|
tokenizer.push_to_hub(save_to) |
|
|
|
|
|
# Manual Testing |
|
prompt = "What are we having for dinner?" |
|
print("Prompt:", prompt) |
|
inputs = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
).to("cuda") |
|
|
|
# Detting temperature to 0 to make sure result deterministic |
|
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128, temperature=0) |
|
|
|
correct_output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", correct_output_text[0][len(prompt) :]) |
|
|
|
|
|
# Load model from saved checkpoint |
|
reloaded_model = AutoModelForCausalLM.from_pretrained( |
|
save_to, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
generated_ids = reloaded_model.generate(**inputs, max_new_tokens=128, temperature=0) |
|
output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", output_text[0][len(prompt) :]) |
|
|
|
assert(correct_output_text == output_text) |
|
``` |