manueldeprada's picture
Upload folder using huggingface_hub
1e37df0 verified
from typing import Union, Optional, TYPE_CHECKING
import torch
from transformers import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
from transformers.generation.utils import (
GenerationMixin,
GenerateNonBeamOutput,
GenerateDecoderOnlyOutput,
)
from transformers.cache_utils import Cache, EncoderDecoderCache, DynamicCache
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from transformers.generation.utils import GenerateEncoderDecoderOutput, ALL_CACHE_NAMES
from transformers.utils import ModelOutput
from transformers.configuration_utils import PretrainedConfig
import torch.nn as nn
import logging
if TYPE_CHECKING:
from transformers.generation.streamers import BaseStreamer
logger = logging.getLogger(__name__)
def stack_model_outputs(
model_outputs: list[ModelOutput], config: PretrainedConfig
) -> ModelOutput:
"""
Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
specific ModelOutput subclass from the list provided.
"""
if not model_outputs:
raise ValueError("Input list is empty.")
# Infer the class from the first object in the list
model_output_cls = type(model_outputs[0])
# Ensure all objects are of the same type
if not all(isinstance(obj, model_output_cls) for obj in model_outputs):
raise ValueError("All elements in the list should be of the same type.")
# Helper function to concat tensors or tuples of tensors
def _concat(data):
"""
Reverse of `_split` function above.
"""
if any(data is None for data in data):
return None
if isinstance(data[0], torch.Tensor):
return torch.cat(data, dim=0)
elif isinstance(data[0], tuple):
# If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
if isinstance(data[0][0], tuple):
return tuple(
tuple(
torch.cat([attr[i][j] for attr in data], dim=0)
for j in range(len(data[0][0]))
)
for i in range(len(data[0]))
)
else:
return tuple(
torch.cat([attr[i] for attr in data], dim=0)
for i in range(len(data[0]))
)
elif isinstance(data[0], (int, float)):
# If the elements are integers or floats, return a tensor
return torch.tensor(data)
else:
raise TypeError(f"Unexpected attribute type: {type(data[0])}")
# Use a dictionary comprehension to gather attributes from all objects and concatenate them
concatenated_data = {
k: _concat([getattr(model_output, k) for model_output in model_outputs])
for k in model_output_cls.__dataclass_fields__
}
# Return a new object of the inferred class with the concatenated attributes
return model_output_cls(**concatenated_data)
def _ranking_fast(
context_hidden: torch.FloatTensor,
next_hidden: torch.FloatTensor,
next_top_k_probs: torch.FloatTensor,
cosine_matrix_mask: torch.LongTensor,
alpha: float,
beam_width: int,
) -> torch.FloatTensor:
"""
Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
row in the batch.
"""
norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
cosine_matrix = torch.matmul(
norm_context_hidden, norm_next_hidden.transpose(1, 2)
).squeeze(-1) # [B*K, S]
# Penalize cosine_matrix based on the cosine_matrix_mask (ignore padding positions)
# Using a large negative value for masked positions
cosine_matrix_mask = cosine_matrix_mask.to(dtype=cosine_matrix.dtype)
cosine_matrix_mask = (1 - cosine_matrix_mask) * torch.finfo(cosine_matrix.dtype).min
cosine_matrix = cosine_matrix + cosine_matrix_mask
degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1) # [B*K]
next_top_k_probs = next_top_k_probs.view(-1) # [B*K]
contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
contrastive_score = torch.stack(
torch.split(contrastive_score, beam_width)
) # [B, K]
_, selected_idx = contrastive_score.max(dim=-1) # [B]
return selected_idx
@torch.no_grad()
def _contrastive_search(
model,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"],
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
model_kwargs:
Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
if not model_kwargs["use_cache"]:
raise ValueError("Contrastive search requires `use_cache=True`")
if model._is_stateful:
# Just like assisted generation, we need to be able to rollback to a previous state (see comment above)
raise ValueError(
f"contrastive search is not supported with stateful models, such as {model.__class__.__name__}"
)
# init values
has_eos_stopping_criteria = any(
hasattr(criteria, "eos_token_id") for criteria in stopping_criteria
)
top_k = generation_config.top_k
penalty_alpha = generation_config.penalty_alpha
pad_token_id = generation_config._pad_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
sequential = generation_config.low_memory
# init attention / hidden states / scores tuples
raw_logits = () if (return_dict_in_generate and output_logits) else None
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = (
() if (return_dict_in_generate and output_hidden_states) else None
)
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and model.config.is_encoder_decoder:
encoder_attentions = (
model_kwargs["encoder_outputs"].get("attentions")
if output_attentions
else None
)
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states")
if output_hidden_states
else None
)
# keep track of which sequences are already finished
batch_size, cur_len = input_ids.shape[:2]
unfinished_sequences = torch.ones(
batch_size, dtype=torch.long, device=input_ids.device
)
model_kwargs = model._get_initial_cache_position(
cur_len, input_ids.device, model_kwargs
)
# Create cosine_matrix_mask based on the attention_mask
cosine_matrix_mask = torch.ones_like(input_ids, dtype=torch.long)
if model.config.is_encoder_decoder:
if (
"decoder_attention_mask" in model_kwargs
and model_kwargs["decoder_attention_mask"] is not None
):
cosine_matrix_mask = model_kwargs["decoder_attention_mask"]
else:
cosine_matrix_mask = model_kwargs["attention_mask"]
cosine_matrix_mask = cosine_matrix_mask.repeat_interleave(top_k, dim=0)
this_peer_finished = False
while model._has_unfinished_sequences(
this_peer_finished, synced_gpus, device=input_ids.device
):
# if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
# (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
if model_kwargs.get("past_key_values") is None or (
isinstance(model_kwargs["past_key_values"], (Cache, EncoderDecoderCache))
and model_kwargs["past_key_values"].get_seq_length() == 0
):
# prepare inputs
model_kwargs["use_cache"] = True
model_inputs = model.prepare_inputs_for_generation(
input_ids, **model_kwargs
)
# encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
# the `encoder_outputs`
outputs = model(
**model_inputs,
return_dict=True,
output_hidden_states=True,
output_attentions=output_attentions,
)
# last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
# previous tokens)
if model.config.is_encoder_decoder:
last_hidden_states = outputs.decoder_hidden_states[-1]
else:
last_hidden_states = outputs.hidden_states[-1]
# next logit for contrastive search to select top-k candidate tokens
# Copy is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration
# (the clone itmodel is always small)
# torch.float32 is needed to retain precision for later logits manipulations
logit_for_next_step = outputs.logits[:, -1, :].to(
copy=True, dtype=torch.float32, device=input_ids.device
)
model_kwargs = model._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=model.config.is_encoder_decoder,
)
if not sequential:
# Expands model inputs top_k times, for batched forward passes (akin to beam search).
# input_ids is required for expanding visual inputs in qwen2vl
_, model_kwargs = model._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=top_k,
is_encoder_decoder=model.config.is_encoder_decoder,
**model_kwargs,
)
past_key_values = model_kwargs.get("past_key_values")
if past_key_values is None:
raise ValueError(
f"{model.__class__.__name__} does not support caching and therefore **can't** be used "
"for contrastive search."
)
elif (
not isinstance(past_key_values[0], (tuple, torch.Tensor))
or past_key_values[0][0].shape[0] != batch_size
):
raise ValueError(
f"{model.__class__.__name__} does not have a standard cache format and therefore **can't** be "
"used for contrastive search without further modifications."
)
# contrastive_search main logic start:
# contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
# degeneration penalty
processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1)
top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_logits:
raw_logits += (logit_for_next_step,)
if output_scores:
scores += (processed_logit_for_next_step,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,)
if model.config.is_encoder_decoder
else (outputs.attentions,)
)
if model.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if model.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# This is needed to properly delete outputs.logits which may be very large for this first iteration
# Otherwise a reference to outputs.logits is kept all along until after the next call to model.forward()
del outputs
if not sequential:
# Replicates the new past_key_values to match the `top_k` candidates
past = model_kwargs["past_key_values"]
# If it is a static cache, modify it in-place layer after layer to save memory
if isinstance(past, DynamicCache) or (
isinstance(past, EncoderDecoderCache)
and isinstance(past.self_attention_cache, DynamicCache)
):
past.batch_repeat_interleave(top_k)
else:
new_key_values = []
for layer in past:
items = []
# item is either the key or the value matrix
for item in layer:
items.append(item.repeat_interleave(top_k, dim=0))
new_key_values.append(tuple(items))
past = tuple(new_key_values)
model_kwargs["past_key_values"] = past
if sequential:
all_outputs = []
for i in range(top_k):
# compute the candidate tokens by the language model and collect their hidden_states
next_model_inputs = model.prepare_inputs_for_generation(
top_k_ids[:, i].view(-1, 1), **model_kwargs
)
outputs = model(
**next_model_inputs,
return_dict=True,
output_hidden_states=True,
output_attentions=output_attentions,
)
if isinstance(outputs["past_key_values"], DynamicCache) or (
isinstance(outputs["past_key_values"], EncoderDecoderCache)
and isinstance(
outputs["past_key_values"].self_attention_cache, DynamicCache
)
):
# Remove past K-V from output since we don't need to stack later
outputs["past_key_values"] = None
# Remove last token from past K-V since we don't want to append it at this point
model_kwargs["past_key_values"].crop(-1)
else:
raise ValueError(
f"Unsupported cache type: {type(outputs['past_key_values'])}. Contrastive search requires "
"dynamic cache, so set `cache_implementation='dynamic'` in the generation config."
)
all_outputs.append(outputs)
outputs = stack_model_outputs(all_outputs, model.config.get_text_config())
else:
# compute the candidate tokens by the language model and collect their hidden_states
# assembles top_k_ids into batch of size k
next_model_inputs = model.prepare_inputs_for_generation(
top_k_ids.view(-1, 1), **model_kwargs
)
outputs = model(
**next_model_inputs,
return_dict=True,
output_hidden_states=True,
output_attentions=output_attentions,
)
# This is essential to avoid having a last reference to the big past K-V and double the necessary memory
# in the next loop
del next_model_inputs
# name is different for encoder-decoder and decoder-only models
if model.config.is_encoder_decoder:
next_hidden = outputs.decoder_hidden_states[-1]
full_hidden_states = outputs.decoder_hidden_states
else:
next_hidden = outputs.hidden_states[-1]
full_hidden_states = outputs.hidden_states
# .float() is needed to retain precision for later logits manipulations
logits = outputs.logits[:, -1, :].float()
context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)
# compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
# model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
# introduce (noticeable) slowdowns on single-device runs.
selected_idx = _ranking_fast(
context_hidden,
next_hidden,
top_k_probs,
cosine_matrix_mask,
penalty_alpha,
top_k,
)
cosine_matrix_mask = torch.cat(
[
cosine_matrix_mask,
cosine_matrix_mask.new_ones((cosine_matrix_mask.shape[0], 1)),
],
dim=-1,
)
selected_idx = selected_idx.to("cpu")
# This will be used instead of the previous inneficient torch.stack(torch.split())
augmented_idx = torch.tensor(
[x + i * top_k for i, x in enumerate(selected_idx)]
)
# prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
# the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
# (model confidence minus degeneration penalty); (6) decoder hidden_states
next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
next_hidden = next_hidden[range(batch_size), selected_idx, :]
last_hidden_states = torch.cat(
[last_hidden_states, next_hidden.unsqueeze(1)], dim=1
)
next_decoder_hidden_states = ()
for layer in full_hidden_states:
layer = torch.stack(torch.split(layer, top_k))[
range(batch_size), selected_idx, :
]
next_decoder_hidden_states += (layer,)
# generate past_key_values cache of only the selected token
if sequential:
next_model_input = model.prepare_inputs_for_generation(
top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
)
selected_outputs = model(
**next_model_input,
return_dict=True,
output_hidden_states=False,
output_attentions=False,
)
next_past_key_values = selected_outputs["past_key_values"]
else:
next_past_key_values = None
for possible_cache_name in ALL_CACHE_NAMES:
next_past_key_values = next_past_key_values or getattr(
outputs, possible_cache_name, None
)
# Do it in-place layer per layer to save memory
if isinstance(next_past_key_values, DynamicCache) or (
isinstance(next_past_key_values, EncoderDecoderCache)
and isinstance(next_past_key_values.self_attention_cache, DynamicCache)
):
next_past_key_values.batch_select_indices(augmented_idx)
else:
new_key_values = []
for layer in next_past_key_values:
items = []
# item is either the key or the value matrix
for item in layer:
items.append(item[augmented_idx, ...])
new_key_values.append(tuple(items))
next_past_key_values = tuple(new_key_values)
logit_for_next_step = torch.stack(torch.split(logits, top_k))[
range(batch_size), selected_idx, :
]
logit_for_next_step = logit_for_next_step.to(input_ids.device)
# Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
if model.config.is_encoder_decoder:
next_step_cross_attentions = ()
next_step_decoder_attentions = ()
if output_attentions:
for layer in outputs.cross_attentions:
layer = torch.stack(torch.split(layer, top_k, dim=0))[
range(batch_size), selected_idx, ...
]
next_step_cross_attentions += (layer,)
for layer in outputs.decoder_attentions:
layer = torch.stack(torch.split(layer, top_k, dim=0))[
range(batch_size), selected_idx, ...
]
next_step_decoder_attentions += (layer,)
outputs = Seq2SeqLMOutput(
past_key_values=next_past_key_values,
decoder_hidden_states=next_decoder_hidden_states,
decoder_attentions=next_step_decoder_attentions or None,
cross_attentions=next_step_cross_attentions or None,
)
else:
next_step_attentions = ()
if output_attentions:
for layer in outputs.attentions:
layer = torch.stack(torch.split(layer, top_k, dim=0))[
range(batch_size), selected_idx, ...
]
next_step_attentions += (layer,)
outputs = CausalLMOutputWithPast(
past_key_values=next_past_key_values,
hidden_states=next_decoder_hidden_states,
attentions=next_step_attentions or None,
)
# contrastive_search main logic end
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = model._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=model.config.is_encoder_decoder,
)
if synced_gpus and this_peer_finished:
continue
# finished sentences should have their next token be a padding token
if has_eos_stopping_criteria:
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
1 - unfinished_sequences
)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
# stop when each sentence is finished
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
input_ids, scores
)
this_peer_finished = unfinished_sequences.max() == 0
if streamer is not None:
streamer.end()
if return_dict_in_generate:
# Contrastive search works by forward looking at the next token, so we need to exclude it from
# `past_key_values` to be consistent with the other decoding methods
if model_kwargs.get("past_key_values") is not None:
if isinstance(model_kwargs["past_key_values"], DynamicCache) or (
isinstance(model_kwargs["past_key_values"], EncoderDecoderCache)
and isinstance(
model_kwargs["past_key_values"].self_attention_cache, DynamicCache
)
):
model_kwargs["past_key_values"].crop(-1)
else:
past_key_values = []
for layer in model_kwargs["past_key_values"]:
layer_past_key_values = []
for item in layer:
layer_past_key_values.append(item[..., :-1, :])
past_key_values.append(tuple(layer_past_key_values))
model_kwargs["past_key_values"] = tuple(past_key_values)
if model.config.is_encoder_decoder:
return GenerateEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
def generate(model, *args, **kwargs):
"""Custom generate function for Contrastive Search decoding.
Args:
model (`PreTrainedModel`):
The model to generate from.
penalty_alpha (`float`): The alpha value for the degeneration penalty.
top_k (`int`): The number of candidates to consider at each step.
"""
cache_implementation = kwargs.pop("cache_implementation", "dynamic_full")
if cache_implementation != "dynamic_full" and (
"sliding_attention"
in getattr(model.config.get_text_config(), "layer_types", [])
or getattr(model.config.get_text_config(), "sliding_window", 0) > 0
):
logger.warning_once(
"Contrastive search with sliding window attention requires `cache_implementation='dynamic_full'`. "
"Using other cache types may break rollback and cause incorrect results."
)
generation_outputs = GenerationMixin.generate(
model,
*args,
custom_generate=_contrastive_search,
cache_implementation=cache_implementation,
**kwargs,
)
return generation_outputs