group-beam-search / README.md
manueldeprada's picture
Upload folder using huggingface_hub
b60e744 verified
---
library_name: transformers
tags:
- custom_generate
---
## Description
[Diverse beam search](https://hf.co/papers/1610.02424) is a variant of beam search that produces more diverse output candidates to choose from. This strategy measures the dissimilarity of sequences and a penalty is applied if sequences are too similar. To avoid high computation costs, the number of beams is divided into groups.
Enable diverse beam search with the `num_beams`, `num_beam_groups` and `diversity_penalty` parameters (the `num_beams` parameter should be divisible by `num_beam_groups`).
This implementation matches the `group_beam_search` functionality present in `transformers<4.56.0`.
---
## Base model
* [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B)
---
## Model compatibility
* Decoder-only transformer models
---
## Additional Arguments
* **`num_beams`** (*int*, optional, defaults to `1`):
Number of beams for beam search. If not greater than `num_beam_groups`, will be set to `num_beam_groups`.
* **`num_beam_groups`** (*int*, optional, defaults to `1`):
Number of groups to divide `num_beams` into for beam search.
* **`diversity_penalty`** (*float*, optional, defaults to `0.0`):
Diversity penalty applied to beams.
* **`early_stopping`** (*bool* or *str*, optional, defaults to `False`):
Whether to stop beam search when at least `num_beams` complete candidates are finished per batch or not. If not `False`, it should be an integer greater than 1 indicating the minimum number of beams required to be finished per batch.
* **`max_length`** (*int*, optional, defaults to `20`):
The maximum length of the generated sequence.
* **`num_return_sequences`** (*int*, optional, defaults to `1`):
The number of sequences to return.
* **`repetition_penalty`** (*float*, optional, defaults to `None`):
Helps reduce repetition. A value of `1.2` is recommended.
---
## Output Type changes
* The `generate` method output remains the same as default `transformers` generation,
but logits are post-processed using the DoLa contrastive scoring before token selection.
---
## Example usage
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
device = infer_device()
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to(device)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-0.6B", dtype=torch.float16).to(device)
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, num_beams=6, num_beam_groups=3, diversity_penalty=1.0, do_sample=False, custom_generate="transformers-community/group-beam-search", trust_remote_code=True)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
```