Summarization
WhisperCTC / README.md
tuanio's picture
Update README.md
e54a86a
---
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
pipeline_tag: summarization
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
```python
class WhisperCTC(nn.Module):
def __init__(
self,
encoder_id: str = "tuanio/whisper-encoder.tiny.en",
dropout: float = 0.1,
vocab_size: int = 47,
):
super().__init__()
self.encoder = WhisperEncoder.from_pretrained(encoder_id)
print("Freezing Whisper Encoder...")
self.encoder._freeze_parameters()
print("Freezed!")
self.lm_head = nn.Sequential(
nn.SiLU(),
nn.Dropout(dropout),
nn.Linear(self.encoder.config.d_model, vocab_size),
)
nn.init.kaiming_uniform_(
self.lm_head[-1].weight, mode="fan_in", nonlinearity="relu"
)
def forward(self, feat: Tensor, attn_mask: Tensor):
enc = self.encoder(
input_features=feat, attention_mask=attn_mask
).last_hidden_state
logits = self.lm_head(enc)
log_probs = nn.functional.log_softmax(logits, dim=-1)
return log_probs
```
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
- IndictTTS: https://www.kaggle.com/datasets/tuannguyenvananh/indictts-english
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
```yaml
data_cfg:
dataset:
processor:
feat_extractor_id: ${model_cfg.model.encoder_id}
tokenizer_id: ${model_cfg.tokenizer_id}
path:
base:
indict_tts: ../IndicTTS
cv: ../
train:
- train_data/indict_tts_train.jsonl
# - train_data/cv_train.jsonl
test:
- train_data/indict_tts_test.jsonl
# - train_data/cv_test.jsonl
dev:
- train_data/indict_tts_dev.jsonl
# - train_data/cv_dev.jsonl
dataloader:
batch_size: 46
num_workers: 8
pin_memory: True
model_cfg:
tokenizer_id: tuanio/wav2vec2-phoneme-ipa-ctc
model:
dropout: 0.1
encoder_id: tuanio/whisper-encoder.medium.en
optim:
lr: 1.25e-05
betas: [0.9, 0.998]
weight_decay: 0.01
scheduler:
name: linear
total_steps: -1
warmup_ratio: 0.05
interval: step
frequency: 1
trainer_cfg:
log:
wandb: True
logger_wandb:
project: aped_indian-lish
name: whisper-medium-indict-tts-only-from-epoch1
log_model: all
arguments:
accelerator: gpu
devices: -1
max_epochs: 10
log_every_n_steps: 1
enable_checkpointing: True
accumulate_grad_batches: 2
inference_mode: True
gradient_clip_val: 5.0
check_val_every_n_epoch: 1
val_check_interval: null
experiment_cfg:
train: True
valid: True
test: True
ckpt:
resume_ckpt: True
ckpt_path: ckpt/medium.epoch3.ckpt
```
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]