|
--- |
|
license: mit |
|
datasets: |
|
- garythung/trashnet |
|
- Zesky665/TACO |
|
- detection-datasets/coco |
|
language: |
|
- en |
|
tags: |
|
- object-detection |
|
- computer-vision |
|
- yolov5 |
|
--- |
|
# Examples |
|
<div align="center"> |
|
<img width="416" alt="turhancan97/yolov5-detect-trash-classification" src="https://huggingface.co/turhancan97/yolov5-detect-trash-classification/resolve/main/example1.jpg"> |
|
</div> |
|
<div align="center"> |
|
<img width="416" alt="turhancan97/yolov5-detect-trash-classification" src="https://huggingface.co/turhancan97/yolov5-detect-trash-classification/resolve/main/example2.jpg"> |
|
</div> |
|
<div align="center"> |
|
<img width="416" alt="turhancan97/yolov5-detect-trash-classification" src="https://huggingface.co/turhancan97/yolov5-detect-trash-classification/resolve/main/example3.jpg"> |
|
</div> |
|
|
|
### How to use |
|
|
|
- Install [yolov5](https://github.com/fcakyon/yolov5-pip): |
|
|
|
```bash |
|
pip install -U yolov5 |
|
``` |
|
|
|
- Load model and perform prediction: |
|
|
|
```python |
|
import yolov5 |
|
|
|
# load model |
|
model = yolov5.load('turhancan97/yolov5-detect-trash-classification') |
|
|
|
# set model parameters |
|
model.conf = 0.25 # NMS confidence threshold |
|
model.iou = 0.45 # NMS IoU threshold |
|
model.agnostic = False # NMS class-agnostic |
|
model.multi_label = False # NMS multiple labels per box |
|
model.max_det = 1000 # maximum number of detections per image |
|
|
|
# set image |
|
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' |
|
|
|
# perform inference |
|
results = model(img, size=416) |
|
|
|
# inference with test time augmentation |
|
results = model(img, augment=True) |
|
|
|
# parse results |
|
predictions = results.pred[0] |
|
boxes = predictions[:, :4] # x1, y1, x2, y2 |
|
scores = predictions[:, 4] |
|
categories = predictions[:, 5] |
|
|
|
# show detection bounding boxes on image |
|
results.show() |
|
|
|
# save results into "results/" folder |
|
results.save(save_dir='results/') |
|
``` |
|
|
|
- Finetune the model on your custom dataset: |
|
|
|
```bash |
|
yolov5 train --data data.yaml --img 416 --batch 16 --weights turhancan97/yolov5-detect-trash-classification --epochs 10 |
|
``` |