Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vijay-delete/bge-chrono-botany")
# Run inference
sentences = [
'What intervention strategies can effectively mitigate Resonance Cascade phenomena in Chrono-flora cultivation?',
"This cascading effect resulted in localized spacetime distortions, necessitating immediate intervention via standard phase-leaf nullification protocols to restore stability. Notably, our results indicate a potential for utilizing Event Horizon Petals to mitigate these resonance mismatches by introducing a feedback loop that recalibrates the plant's spatial positioning prior to the onset of temporal fluctuations.",
'Quantum Photosynthesis serves as a vital stabilizing force during the eigen-frequency adjustments of Chrono-flora. By maintaining energy levels throughout the calibration process, QP mitigates potential fluctuations in the spacetime continuum, thereby enhancing the resilience of these engineered plants against temporal disruptions and supporting their overall stability in challenging environments.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
chrono_botany_evalInformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.3404 |
| cosine_accuracy@3 | 0.5745 |
| cosine_accuracy@5 | 0.6809 |
| cosine_accuracy@10 | 0.766 |
| cosine_precision@1 | 0.3404 |
| cosine_precision@3 | 0.1915 |
| cosine_precision@5 | 0.1362 |
| cosine_precision@10 | 0.0766 |
| cosine_recall@1 | 0.3404 |
| cosine_recall@3 | 0.5745 |
| cosine_recall@5 | 0.6809 |
| cosine_recall@10 | 0.766 |
| cosine_ndcg@10 | 0.5498 |
| cosine_mrr@10 | 0.4804 |
| cosine_map@100 | 0.4886 |
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
How can eigen-frequencies be optimized to enhance Temporal Pollen use in Chrono-flora cultivation? |
By utilizing carefully calibrated eigen-frequencies of selected flowering species, we can establish controlled environments where Temporal Pollen can be harvested and utilized to accelerate or decelerate growth cycles. |
What methods exist using Eigen-frequency dissonance to reduce spacetime distortions? |
The innovative study of utilizing Eigen-frequency dissonance within Chrono-flora has unveiled potential methodologies for mitigating the risks associated with Resonance Cascades. Current applications often presume congruence between a plant's inherent resonant temporal frequency and the oscillatory patterns produced by Temporal Pollen application. However, through intentional mismatch crafting, we theorize that we can produce predetermined temporal fluctuations enabling localized disruptions within spacetime, thus diverting catastrophic distortions typically incurred during unanticipated fluctuations. |
How do Event Horizon Petals stabilize plant locations in Chrono-flora amidst spacetime distortions? |
Furthermore, the synthesis of Event Horizon Petals demonstrated potential in creating observational illusions that stabilize the perceived location of the plants, serving as a protective measure against catastrophic spacetime distortions. |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | chrono_botany_eval_cosine_ndcg@10 |
|---|---|---|
| -1 | -1 | 0.3973 |
| 1.0 | 12 | 0.4946 |
| 2.0 | 24 | 0.5487 |
| 3.0 | 36 | 0.5484 |
| 4.0 | 48 | 0.5498 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
BAAI/bge-base-en-v1.5