YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Model Card of vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qa

This model is fine-tuned version of ckpts/mt5-small-trimmed-ru-120000 for question answering task on the lmqg/qg_ruquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ru", model="vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qa")

# model prediction
answers = model.answer_q(list_question="чем соответствует абсолютная погрешность скорости света ?", list_context=" Наивысшая точность измерений была достигнута в начале 1970-х. В 1975 году XV Генеральная конференция по мерам и весам зафиксировала это положение и рекомендовала считать скорость света, равной 299 792 458 м/с с относительной погрешностью 4•10−9, что соответствует абсолютной погрешности 1,1 м/с. Впоследствии это значение скорости света было положено в основу определения метра в Международной системе единиц (СИ), а сама скорость света стала рассматриваться как фундаментальная физическая постоянная, по определению равная указанному значению точно.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qa")
output = pipe("question: чем соответствует абсолютная погрешность скорости света ?, context: Наивысшая точность измерений была достигнута в начале 1970-х. В 1975 году XV Генеральная конференция по мерам и весам зафиксировала это положение и рекомендовала считать скорость света, равной 299 792 458 м/с с относительной погрешностью 4•10−9, что соответствует абсолютной погрешности 1,1 м/с. Впоследствии это значение скорости света было положено в основу определения метра в Международной системе единиц (СИ), а сама скорость света стала рассматриваться как фундаментальная физическая постоянная, по определению равная указанному значению точно.")

Evaluation

Score Type Dataset
AnswerExactMatch 51.37 default lmqg/qg_ruquad
AnswerF1Score 73.33 default lmqg/qg_ruquad
BERTScore 94.96 default lmqg/qg_ruquad
Bleu_1 46.17 default lmqg/qg_ruquad
Bleu_2 40.21 default lmqg/qg_ruquad
Bleu_3 34.84 default lmqg/qg_ruquad
Bleu_4 29.71 default lmqg/qg_ruquad
METEOR 41.65 default lmqg/qg_ruquad
MoverScore 83.99 default lmqg/qg_ruquad
ROUGE_L 55.07 default lmqg/qg_ruquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_ruquad
  • dataset_name: default
  • input_types: ['paragraph_question']
  • output_types: ['answer']
  • prefix_types: None
  • model: ckpts/mt5-small-trimmed-ru-120000
  • max_length: 512
  • max_length_output: 32
  • epoch: 15
  • batch: 32
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 2
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qa

Evaluation results

  • BLEU4 (Question Answering) on lmqg/qg_ruquad
    self-reported
    29.710
  • ROUGE-L (Question Answering) on lmqg/qg_ruquad
    self-reported
    55.070
  • METEOR (Question Answering) on lmqg/qg_ruquad
    self-reported
    41.650
  • BERTScore (Question Answering) on lmqg/qg_ruquad
    self-reported
    94.960
  • MoverScore (Question Answering) on lmqg/qg_ruquad
    self-reported
    83.990
  • AnswerF1Score (Question Answering) on lmqg/qg_ruquad
    self-reported
    73.330
  • AnswerExactMatch (Question Answering) on lmqg/qg_ruquad
    self-reported
    51.370