|
import os
|
|
from .base import argparse, adding_cuda, load_args
|
|
|
|
|
|
def parser():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("checkpointname")
|
|
|
|
group = parser.add_argument_group('Finetunning options (what should change)')
|
|
group.add_argument("--num_epochs", type=int, help="new number of epochs of training")
|
|
group.add_argument("--batch_size", type=int, help="size of the batches")
|
|
group.add_argument("--lr", type=float, help="AdamW or Lion: learning rate")
|
|
group.add_argument("--snapshot", type=int, help="frequency of saving model/viz")
|
|
group.add_argument("--num_frames", default=-2, type=int, help="number of frames or -1 => whole, -2 => random between min_len and total")
|
|
group.add_argument("--min_len", default=60, type=int, help="number of frames minimum per sequence or -1")
|
|
group.add_argument("--max_len", default=100, type=int, help="number of frames maximum per sequence or -1")
|
|
|
|
opt = parser.parse_args()
|
|
|
|
folder, checkpoint = os.path.split(opt.checkpointname)
|
|
parameters = load_args(os.path.join(folder, "opt.yaml"))
|
|
parameters["folder"] = folder
|
|
|
|
adding_cuda(parameters)
|
|
epoch = int(checkpoint.split("_")[-1].split('.')[0])
|
|
return parameters, folder, checkpoint, epoch
|
|
|