ONNX format of voxerality/rgb_language_cap model
Model inference example:
import onnxruntime as ort
from transformers import AutoTokenizer,AutoImageProcessor
from PIL import Image
import numpy as np
# load the ONNX models (encoder and decoder)
encoder_onnx_path = 'models/rgb_language_cap_onnx/encoder_model.onnx' # load from local path
decoder_onnx_path = 'models/rgb_language_cap_onnx/decoder_model.onnx' # load from local path
encoder_session = ort.InferenceSession(encoder_onnx_path, providers=["CPUExecutionProvider"])
decoder_session = ort.InferenceSession(decoder_onnx_path, providers=["CPUExecutionProvider"])
# load the tokenizer and image processor
model_id = "models/rgb_language_cap_onnx"
processor = AutoImageProcessor.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# load image
image_path = "img2.jpg"
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="np").pixel_values
# run encoder model
encoder_outputs = encoder_session.run(
None,
{"pixel_values": inputs}
)
# extract the encoder hidden states (encoder outputs)
encoder_hidden_states = encoder_outputs[0]
# prepare decoder inputs
decoder_input_ids = np.array([[tokenizer.bos_token_id]], dtype=np.int64)
# run decoder model
max_length = 200 # define maximum length of the sequence
for _ in range(max_length):
decoder_outputs = decoder_session.run(
None,
{
"input_ids": decoder_input_ids, # input for the decoder
"encoder_hidden_states": encoder_hidden_states # outputs from the encoder
}
)
# extract logits and predict next token
logits = decoder_outputs[0]
predicted_token_id = np.argmax(logits[0, -1, :]) # get the predicted token ID from the logits
# if the predicted token is the EOS token, stop the generation
if predicted_token_id == tokenizer.eos_token_id:
break
# append predicted token ID to the decoder inputs for the next step
decoder_input_ids = np.concatenate([decoder_input_ids, np.array([[predicted_token_id]])], axis=-1)
# decode the predicted token IDs into text
predicted_text = tokenizer.decode(decoder_input_ids[0], skip_special_tokens=True)
# print the generated caption
print(predicted_text)
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support