|
# NT DNA Model |
|
|
|
This is the DNA component of a jointly trained NT-ESM2 model pair for DNA-protein analysis. |
|
|
|
## Model Details |
|
|
|
- **Model Type**: Nucleotide Transformer (NT) for DNA sequences |
|
- **Training**: Jointly trained with ESM2 protein model |
|
- **Architecture**: Transformer-based language model for DNA |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
# Load model and tokenizer |
|
model = AutoModel.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding-dna") |
|
tokenizer = AutoTokenizer.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding-dna") |
|
|
|
# Example usage |
|
dna_sequence = "ATCGATCGATCG" |
|
inputs = tokenizer(dna_sequence, return_tensors="pt") |
|
outputs = model(**inputs) |
|
``` |
|
|
|
## Training Details |
|
|
|
- Jointly trained with protein sequences for cross-modal understanding |
|
- Batch size: 8 (based on directory name) |
|
- Context length: 4096 tokens |
|
- Transcript-specific coding sequences |
|
|
|
## Files |
|
|
|
- `config.json`: Model configuration |
|
- `model.safetensors`: Model weights |
|
- `tokenizer_config.json`: Tokenizer configuration |
|
- `vocab.txt`: Vocabulary file |
|
- `special_tokens_map.json`: Special tokens mapping |
|
|
|
## Citation |
|
|
|
If you use this model, please cite the original NT paper and your joint training work. |
|
|