Model Card for Qwen3-8B-SFT-Alpaca
๐ง Model Summary
This model is a fine-tuned version of Qwen3-8B-Base, trained using instruction-following SFT (Supervised Fine-Tuning) on an Alpaca-format dataset.
It is designed to improve instruction comprehension, reasoning ability, and response alignment while maintaining fluency and coherence in multiple languages (mainly Chinese and English).
- Base model: Qwen/Qwen3-8B-Base
- Fine-tuning method: Supervised Fine-Tuning (SFT)
- Training format: Alpaca-style instructionโresponse pairs
- Framework: Transformers + Unsloth
- Languages: Chinese, English
- License: Apache 2.0 (same as Qwen base)
๐ Model Use
โ Direct Use
You can use this model for:
- Instruction following
- Dialogue and Q&A
- Content generation
- Code explanation or summarization
- Educational and tutoring tasks
โ๏ธ Example Inference
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from unsloth import FastLanguageModel
model_name="wesjos/SFT-Qwen3-8B-alpaca"
tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True,
)
alpaca_prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{}
### Response:
"""
inputs = tokenizer(
[
alpaca_prompt.format(
"่ฏทไฝ ไป็ปไธไธ่ชๅทฑ", # instruction
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=1024, use_cache=True,temperature=0.9,do_sample=True,top_p=0.95,top_k=20)
print(tokenizer.batch_decode(outputs)[0])
- Downloads last month
- 32